a = 13.4346(13), b = 13.4926(13), c = 17.6159(17) A, U = 3075.7(5) A3,
T = 173(2) K, space group P21/c, Z = 4, 15490. Reflections measured,
6637 unique (Rint = 0.0358) which were used in all calculations. The final
wR(F2) was 0.1064 (all data).
1 (a) G. J. Domski, J. M. Rose, G. W. Coates, A. D. Bolig and
M. Brookhart, Prog. Polym. Sci., 2007, 32, 30–92;
(b) G. W. Coates, P. D. Hustad and S. Reinartz, Angew. Chem.,
Int. Ed., 2002, 41, 2236–2257.
2 (a) S. Bambirra, D. van Leusen, A. Meetsma, B. Hessen and
J. H. Teuben, Chem. Commun., 2003, 522–523; (b) K. Mashima,
S. Fujikawa, H. Urata, E. Tanaka and A. Nakamura, J. Chem.
Soc., Chem. Commun., 1994, 1623–1624; (c) J. Tian, P. D. Hustad
and G. W. Coates, J. Am. Chem. Soc., 2001, 123, 5134–5135;
(d) S. Reinartz, A. F. Mason, E. B. Lobkovsky and G. W. Coates,
Organometallics, 2003, 22, 2542–2544; (e) R. Furuyama,
M. Mitani, J. Mohri, R. Mori, H. Tanaka and T. Fujita,
Macromolecules, 2005, 38, 1546–1552; (f) M. Mitani, J. Mohri,
Y. Yoshida, J. Saito, S. Ishii, K. Tsuru, S. Matsui, R. Furuyama,
T. Nakano, H. Tanaka, S. Kojoh, T. Matsugi, N. Kashiwa and
T. Fujita, J. Am. Chem. Soc., 2002, 124, 3327–3336; (g) X. Li,
K. Dai, W. Ye, L. Pan and Y. Li, Organometallics, 2004, 23,
1223–1230; (h) S. Yu and S. Mecking, J. Am. Chem. Soc., 2008,
130, 13204–13205.
3 D. P. Gates, S. A. Svejda, E. Onate, C. M. Killian, L. K. Johnson,
P. S. White and M. Brookhart, Macromolecules, 2000, 33,
2320–2334.
4 D. J. Tempel, L. K. Johnson, R. L. Huff, P. S. White and
M. Brookhart, J. Am. Chem. Soc., 2000, 122, 6686–6700.
5 (a) A. C. Gottfried and M. Brookhart, Macromolecules, 2001, 34,
1140–1142; (b) A. C. Gottfried and M. Brookhart, Macromolecules,
2003, 36, 3085–3100.
Fig. 3 (a) Plot of Mn as a function of time for a postpolymerization at
ꢂ10 1C under 1.2 atm of ethylene; catalyst 2/MAO. (b) GPC traces of
PE and PE-b-PH.
A postpolymerization method was used to further test the
stability of ‘‘living spots’’ in the absence of reacting monomer,
which affects the application of the catalyst system to the
preparation of block copolymers.2f After the polymerization
was conducted for 1 h, ethylene was vented and the system was
charged with N2. Ten hours later, the system was recharged
with ethylene to continue the polymerization. As shown in
Fig. 3a, the polymerization system still remains living, and the
Mn value continues to increase linearly with the polymerization
time after recharging ethylene monomer and the PDI values
are around 1.2. Therefore, the longstanding living polymerization
system should have a high potential for synthesis of ethylene-
based block copolymers.
6 (a) M. Schmid, R. Eberhardt, M. Klinga, M. Leskela and
B. Rieger, Organometallics, 2001, 20, 2321–2330; (b) F. A. Hicks,
J. C. Jenkins and M. Brookhart, Organometallics, 2003, 22,
3533–3545; (c) S. J. Diamanti, P. Ghosh, F. Shimizu and
G. C. Bazan, Macromolecules, 2003, 36, 9731–9735.
7 (a) J. D. Azoulay, R. S. Rojas, A. V. Serrano, H. Ohtaki,
G. B. Galland, G. Wu and G. C. Bazan, Angew. Chem., Int. Ed.,
2009, 48, 1089–1092; (b) J. D. Azoulay, Y. Schneider,
G. B. Gallandb and G. C. Bazan, Chem. Commun., 2009,
6177–6179.
A further attempt at the synthesis of diblock copolymer
polyethylene-b-poly(1-hexene) was made by catalyst 2/MAO
at ꢂ10 1C. After polymerizing ethylene for 0.5 h, the ethylene
monomer was removed, and then 5 mL 1-hexene was added
and stirred for 5 h. As shown in GPC elution curves (Fig. 3b),
the peak of polyethylene obtained at 0.5 h appears at a longer
retention time (Mn = 0.88 ꢃ 104, Mw/Mn = 1.22) and another
peak of the final polyethylene-b-poly(1-hexene) copolymer
shifts to the shorter retention time region (Mn = 2.14 ꢃ
104, Mw/Mn = 1.18), indicating a successful preparation of
an A–B diblock polymer under these conditions.
8 (a) G. J. Domski, E. B. Lobkovsky and G. W. Coates, Macro-
molecules, 2007, 40, 3510–3513; (b) T. R. Boussie, G. M. Diamond,
C. Goh, K. A. Hall, A. M. LaPointe, M. K. Leclerc, V. Murphy, J.
A. W. Shoemaker, H. Turner, R. Rosen, J. C. Stevens, F. Alfano,
V. Busico, R. Cipullo and G. Talarico, Angew. Chem., Int. Ed.,
2006, 45, 3278–3283; (c) Y. Lin, K. Yu, S. Huang, Y. Liu,
Y. Wang, S. Liu and J. Chen, Dalton Trans., 2009, 41,
9058–9067; (d) L. Annunziata, D. Pappalardo, C. Tedesco and
In conclusion, we have successfully developed a bulky
2-pyridinemethanamine nickel catalyst for longstanding living
ethylene polymerization to yield branched polyethylene.
Sufficiently bulky substitution on the bridging carbon of
the complex plays a crucial role in resisting the rotation of
the CAr–N bond to prevent chain transfer reaction during the
polymerization process. A diblock copolymer polyethylene-
b-poly(1-hexene) can also be synthesized by catalyst 2/MAO.
Further reports will address the influences of varied steric and
electronic substituents and polymerizations with different
monomers.
C.
(e) L. Annunziata, D. Pappalardo, C. Tedesco and C. Pellecchia,
Macromolecules, 2009, 42, 5572–5578; (f) F. Guerin,
Pellecchia,
Organometallics,
2009,
28,
688–697;
´
D. H. McConville and J. J. Vittal, Organometallics, 1997, 16,
1491–1496.
9 Z. Huang, K. Song, F. Liu, J. Long, H. Hu, H. Gao and Q. Wu,
J. Polym. Sci., Part A: Polym. Chem., 2008, 46, 1618–1628.
10 The synthesis and detailed characterization of the ligands and
complexes can be seen in the supporting information.
11 (a) T. Schleis, T. P. Spaniol, J. Okuda, J. Heinemann and
R. Mulhaupt, J. Organomet. Chem., 1998, 569, 159–167;
(b) L. K. Johnson, C. M. Killian and M. Brookhart, J. Am. Chem.
Soc., 1995, 117, 6414–6415; (c) D. H. Camacho, E. V. Salo,
J. W. Ziller and Z. Guan, Angew. Chem., Int. Ed., 2004, 43,
1821–1825; (d) F. Liu, H. Hu, Y. Xu, L. Guo, S. Zai, K. Song,
H. Gao, L. Zhang, F. Zhu and Q. Wu, Macromolecules, 2009, 42,
7789–7796.
Supports by NSFC (Projects 20734004 and 20974125),
NSFG (Project 8251027501000018) and the Ministry of
Education of China (Foundation for PhD Training) are
gratefully acknowledged.
Notes and references
12 S. D. Ittel, L. K. Johnson and M. Brookhart, Chem. Rev., 2000,
100, 1169–1203.
z Crystal data for complex 1. C39H54Br4Cl2N4Ni2, M = 1086.82,
monoclinic, a = 18.4583(17), b = 15.3616(14), c = 15.5084(14) A,
U = 4394.3(7) A3, T = 173(2) K, space group P21/c, Z = 4, 29190.
Reflections measured, 9553 unique (Rint = 0.0443) which were used in
all calculations. The final wR(F2) was 0.0769 (all data). Crystal data
for complex 2ꢀH2O. C28H38Br2Cl2N2NiO, M = 708.03, monoclinic,
13 K. Zhang, Z. Ye and R. Subramanian, Macromolecules, 2008, 41,
640–649.
14 D. Papanagopoulos, J. Polym. Sci., Part B: Polym. Phys., 2005, 43,
2388–2391.
ꢁc
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 4321–4323 | 4323