Article
Crystal Growth & Design, Vol. 10, No. 8, 2010 3741
more flexible and rotational conformers arise both
from rotation around the N4-S2 and C1-S2 bonds.
This is illustrated by the N4-S2-C1-S1 torsion angles
with values ranging from -78.2 to -118.2° and þ78.2
to þ118.2° (T = 293 K).32
acs.org.
References
€
(1) (a) Morissette, S. L.; Almarsson, O.; Peterson, M. L.; Remenar,
These structural details demonstrate that ACZ pos-
sesses two potential sites for the formation of double-
bridged homo- and heterosynthons, the carboxamidine
(C(N)NH) group on the thiadiazole acetamide fragment
and the sulfonamide group. Interestingly, in three of
the four crystal structures mentioned above the C(N)NH
unit is indeed involved in the formation of such syn-
thons, which are homodimeric in ACZ forms A and B,
and heterodimeric in ACZ-4HBA. The homodimeric
J. F.; Read, M. J.; Lemmo, A. V.; Ellis, S.; Cima, M. J.; Gardner,
C. R. Adv. Drug Delivery Rev. 2004, 56, 275–300. (b) Blagden, N.; de
Matas, M.; Gavan, P. T.; York, P. Adv. Drug Delivery Rev. 2007, 59,
617–630. (c) Chow, K.; Tong, H. H. Y.; Lum, S.; Chow, A. H. L.
J. Pharm. Sci. 2008, 97, 2855–2877. (d) Shan, N.; Zaworotko, M. J.
Drug Discovery Today 2008, 13, 440–446.
(2) (a) Byrn, S. R.; Pfeiffer, R. R.; Stowell, J. G. Solid State Chemistry
of Drugs, 2nd ed.; West Lafayette, IN: SSCI Inc., 1999. (b) Datta, S.;
Grant, D. J. W. Nat. Rev. Drug Discovery 2004, 3, 42–57.
(3) For feature articles and reviews of pharmaceutical co-crystals
€
see (a) Almarsson, O.; Zawarotko, M. J. Chem. Commun. 2004,
C(N)NH HN(N)C synthon also is stable in solution as
3 3 3
1889–1896. (b) Bernstein, J. Chem. Commun. 2005, 5007–5012.
(c) Vishweshwar, P.; McMahon, J. A.; Bis, J. A.; Zaworotko, M. J.
J. Pharm. Sci. 2006, 95, 499–516. (d) Caira, M. R. Mol. Pharmaceu-
tics 2007, 4, 310–316. (e) Blagden, N.; Berry, D. J.; Parkin, A.; Javed,
H.; Ibrahim, A.; Gavan, P. T.; De Matos, L. L.; Seaton, C. C. New. J.
shown by cold spray ionization (CSI) mass spectrometry
of ACZ in methanol9d and also is formed in the solid state
by sulfathiazole and related sulfadrugs.3d,27 Although the
sulfonamide homodimer is a well-known synthon,29,33 in
the present structures it is only observed in ACZ form A.
In this polymorph, the ACZ molecules dimerize further
ꢁꢂ ꢀ
Chem. 2008, 32, 1659–1672. (f) Friscic, T.; Jones, W. Cryst. Growth
Des. 2009, 9, 1621–1637. (g) Schultheiss, N.; Newman, A. Cryst.
Growth Des. 2009, 9, 2950–2967. (h) Childs, S. L.; Zaworotko, M. J.
Cryst. Growth Des. 2009, 9, 4208–4211. (i) Stahly, G. P. Cryst.
Growth Des. 2009, 9, 4212–4229.
to motif II through Nsulfonamide-H Oacetamide interac-
3 3 3
tions,9a,d which also is present in ACZ-4HBA and ACZ-
NA-H2O. In ACZ-form B the sulfonamide groups are
(4) For recent reports on pharmaceutical co-crystals see (a) Guo, K.;
Sadiq, G.; Seaton, C.; Davey, R.; Yin, Q. Cryst. Growth Des. 2010,
10, 268–273. (b) Habgood, M.; Deij, M. A.; Mazurek, J.; Price., S. L.;
ter Horst, J. H. Cryst. Growth Des. 2010, 10, 903–912. (c) Urbanus, J.;
Roelands, C. P. M.; Verdoes, D.; Jansens, P. J.; ter Horst, J. H. Cryst.
Growth Des. 2010, 10, 1171–1179. (d) Stevens, J. S.; Byard, S. J.;
Schroeder, S. L. M. Cryst. Growth Des. 2010, 10, 1419–1434. (e) Lee,
T.; Wang, P. Y. Cryst. Growth Des. 2010, 10, 1435–1442. (f) Liao, X.;
Gautam, M.; Grill, A.; Zhu, H. J. J. Pharm. Sci. 2010, 99, 246–254.
(g) Schultheiss, N.; Lorimer, K.; Wolfe, S.; Desper, J. CrystEngComm
2010, 12, 742–749.
involved in monomeric Nsulfonamide-H Osulfonamide
3 3 3
and Nsulfonamide-H Nthiadiazole contacts.9c A further
interesting aspect is that in all four crystal structures
3 3 3
O-H O interactions with ACZ are completely absent
3 3 3
and only O-H N, N-H O, and N-H N interac-
3 3 3
tions are occurring.
3 3 3
3 3 3
4. Conclusions
(5) For recent reviews on crystal engineering see (a) Desiraju, G. R.
€
Angew. Chem., Int. Ed. 2007, 46, 8342–8356. (b) Aakeroy, C. B.;
The present studyhas shown that ACZ canformco-crystals
with carboxylic acids and carboxamides via a series of dif-
ferent hydrogen bonds that include the double-bridged
Champness, N. R.; Janiak, C. CrystEngComm 2010, 12, 22–43.
(6) Traks, A. V. Mol. Pharmaceutics 2007, 4, 301–309.
(7) (a) Chakravarty, S.; Kannan, K. K. J. Mol. Biol. 1994, 243,
298–309. (b) Nair, S. K.; Krebs, J. F.; Christianson, D. W.; Fierke,
C. A. Biochemistry 1995, 34, 3981–3989.
C(N)NH HOOC synthon as well as N-H N, O-H
3 3 3
3 3 3
3 3 3
N, and N-H O interactions. Interestingly, in the two
3 3 3
(8) (a) Kasim, N. A.; Whitehouse, M.; Ramachandran, C.; Bermejo,
€
structurally characterized co-crystals with ACZ the API was
incorporated into the crystal structure in the form of a dimeric
fragment that is found also in the crystal structure of the ACZ
polymorph employed for the grinding experiments.
M.; Lennernas, H.; Hussain, A. S.; Junginger, H. E.; Stavchansky,
S. A.; Midha, K. K.; Shah, V. P.; Amidon, G. L. Mol. Pharmaceu-
tics 2004, 1, 85–96. (b) Ono N.; Ushijima I. Patent JP2009269856(A),
2009. (c) Swenson E. R. Patent US2009131490(A1), 2009.
(9) (a) Mathew, M.; Palenik, G. J. J. Chem. Soc., Perkin Trans. 2 1974,
532–536. (b) Umeda, T.; Ohnishi, N.; Yokoyama, T.; Kuroda, T.; Kita,
Y.; Kuroda, K.; Tatsumi, E.; Matsuda, Y. Chem. Pharm. Bull. 1985, 33,
3422–3428. (c) Griesser, U. J.; Burger, A.; Mereiter, K. J. Pharm. Sci.
1997, 86, 352–358. (d) Nagao, Y.; Honjo, T.; Iimori, H.; Goto, S.; Sano,
S.; Shiro, M.; Yamaguchi, K.; Sei, Y. Tetrahedron Lett. 2004, 45,
8757–8761. (e) Baraldi, C.; Gamberini, M. C.; Tinti, A.; Palazzoli, F.;
Ferioli, V. J. Mol. Struct. 2009, 918, 88–96.
(10) (a) Duffel, M. W.; Ing, I. S.; Segarra, T. M.; Dixson, J. A.;
Barfknecht, C. F.; Schoenwald, R. D. J. Med. Chem. 1986, 29,
1488–1494. (b) Parasrampuria, J.; Gupta, V. D. J. Pharm. Sci. 1990,
79, 835–836. (c) El-Gazayerly, O. N.; Hikal, A. H. Int. J. Pharm. 1997,
158, 121–127. (d) Haznedar, S.; Dortunc-, B. Int. J. Pharm. 2004, 269,
131–140. (e) Pudipeddi, M.; Serajuddin, A. T. M. J. Pharm. Sci. 2005,
94, 929–939. (f) Granero, G. E.; Longhi, M. R.; Becker, C.; Junginger,
H. E.; Kopp, S.; Midha, K. K.; Shah, V. P.; Stavchansky, S.; Dressman,
J. B.; Barends, D. M. J. Pharm. Sci. 2008, 97, 3691–3699.
As indicated by the co-crystal phase stability experiments,
solid samples of ACZ-4HBA do not transform to ACZ when
exposed to water at different physiological pH values; how-
ever, ACZ-NA-H2O transforms slowly into ACZ. A further
interesting result is that ACZ-NA-H2O can be dehydrated by
thermal treatment to give a new co-crystalline solid phase of
the composition ACZ-NA, which is stable at ambient condi-
tions for several months but transforms to the corresponding
hydrate upon stirring in water.
Acknowledgment. This work received support from Con-
sejo Nacional de Ciencia y Tecnologia (CONACyT) in form
of a postgraduate fellowship for J.I.A.-G. and through project
No. CB2007-83440.
(11) (a) SMART: Molecular Analysis Research Tool, Versions 5.057 and
5 0.618; Bruker Analytical X-ray Systems: Madison, WI, 1997 and
2000. (b) SAINT þ NT, Versions 6.01 and 6.04; Bruker Analytical
X-ray Systems: Madison, WI, 1999 and 2001. (c) Sheldrick, G. M.
SHELX86, Program for Crystal Structure Solution; University of
Supporting Information Available: DSC-TGA graphs for ACZ,
ACZ-4HBA, ACZ-NA-H2O, and NA-4HBA. IR spectra for
ACZ-NA-H2O, NA-4HBA, and ACZ-NA-H2O (before and after
thermal treatment). 1H NMR spectra of (a) ACZ, (b) NA, and (c)
ACZ-NA. XRPD patterns for the co-crystal phase stability assays
of ACZ-4HBA in water at different physiological pH values. XRPD
patterns for NA-4HBA. Table with hydrogen bonding geometries
for compounds ACZ-4HBA, ACZ-NA-H2O, and NA-4HBA. This
€
Gottingen: Germany, 1986. (d) SHELXTL-NT, Versions 5.10 and 6.10;
Bruker Analytical X-ray Systems: Madison, WI, 1999 and 2000.
(12) Farrugia, L. J. J. Appl. Crystallogr. 1999, 32, 837–838.
(13) GRAS = Generally Regarded As Safe. This list is published by the
U.S. Food and Drug Administration (FDA).