of the triplet emitting compounds 1, 2 and [(btp)2Ir(III)(acac)]5
indicating efficient energy transfer from the PVK matrix to all
red triplet emitters. The photoluminescence reveals two maxima
at 590 nm and 650 nm, respectively, for both of the compounds
1 and 2. These emission maxima are 10 nm and 25 nm blue-
shifted compared to [(btp)2Ir(III)(acac)].5 The electroluminescence
of the triplet emitter series compounds 1, 2 and [(btp)2Ir(III)(acac)]5
are typically about 40 nm and 20 nm red-shifted for each of the
emission maxima compared to the observed photoluminescence
spectra. This is a typical finding for systems with a charge
trapping mechanism of exciton formation at dopant sites, which
are characterized by inhomogeneous broadening of the density of
states.8 Preferably, the electroluminescence emission spectra of 1,
2 and [(btp)2Ir(III)(acac)]5 would be almost congruent in shape.
The observed decay curves were identical for every dopant
concentration in the studied range, indicating the absence of
concentration quenching. The monoexponential fit curves shown
in Fig. 3 reveal decay times of 1.2 ms for complexes 1 and 2
and 5.1 ms for [(btp)2Ir(III)(acac)].5 Thus, the phosphorescence
decay times of the newly designed triplet emitters 1 and 2 are
significantly shorter making them thus attractive candidates in
advanced light-emitting diode applications.
short phosphorescence lifetimes making them promising light-
emitting candidates for a series of applications in advanced organic
and polymer light-emitting devices.
Acknowledgements
E.H. acknowledges the Deutsche Forschungsgemeinschaft (DFG)
for financial support. This research forms part of the research pro-
gram of the Dutch Polymer Institute (DPI), within collaborating
projects #518 and #629.
Notes and references
1 (a) B. Ma, F. Lauterwasser, L. Deng, S. C. Zonte, B. J. Kim, J. M. J.
Frechet, C. Borek and M. E. Thompson, Chem. Mater., 2007, 19, 4827;
(b) J. L. Rodriguez-Redondo, R. D. Costa, E. Orti, A. Sastre-Santos,
H. J. Bolink and F. Fernandez-Lazaro, Dalton Trans., 2009, 9787; (c) E.
Holder, B. M. W. Langeveld and U. S. Schubert, Adv. Mater., 2005, 17,
1109; (d) N. Rehmann, C. Ulbricht, A. Koehnen, P. Zacharias, M. C.
Gather, D. Hertel, E. Holder, K. Meerholz and U. S. Schubert, Adv.
Mater., 2008, 20, 129; (e) N. Tian, A. Thiessen, R. Schiewek, O. J.
Schmitz, D. Hertel, K. Meerholz and E. Holder, J. Org. Chem., 2009,
74, 2718.
2 (a) M. C. DeRosa, D. J. Hodgson, G. D. Enright, B. Dawson, C. E. B.
Evans and R. J. Crutchley, J. Am. Chem. Soc., 2004, 126, 7619; (b) Q.
Zhao, F. Li, S. Liu, M. Yu, Z. Liu, T. Yi and C. Huang, Inorg. Chem.,
2008, 47, 9256; (c) L. H. Fischer, M. I. J. Stich, O. S. Wolfbeis, N. Tian,
E. Holder and M. Schaeferling, Chem.–Eur. J., 2009, 15, 10857; (d) R.
Gao, D. G. Ho, B. Hernandez, M. Selke, D. Murphy, P. I. Djurovich and
M. E. Thompson, J. Am. Chem. Soc., 2002, 124, 14828.
3 Q. Zhao, M. Yu, L. Shi, S. Liu, C. Li, M. Shi, Z. Zhou, C. Huang and
F. Li, Organometallics, 2010, 29, 1085.
4 (a) I. M. Dixon, J.-P. Collin, J.-P. Sauvage, L. Flamigni, S. Encinas and F.
Barigelletti, Chem. Soc. Rev., 2000, 29, 385; (b) J.-P. Collin, I. M. Dixon,
J.-P. Sauvage, J. A. G. Williams, F. Barigelletti and L. Flamigni, J. Am.
Chem. Soc., 1999, 121, 5009; (c) J. C. Araya, J. Gajardo, S. A. Moya, P.
Aguirre, L. Toupet, J. A. G. Williams, M. Escadeillas, H. Le Bozec and
V. Guerchais, New J. Chem., 2010, 34, 21; (d) C. Schaffner-Hamann, A.
von Zelewsky, A. Barbieri, F. Barigelletti, G. Muller, J. P. Riehl and A.
Neels, J. Am. Chem. Soc., 2004, 126, 9339.
5 (a) S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H.-E. Lee,
C. Adachi, P. E. Burrows, S. R. Forrest and M. E. Thompson, J. Am.
Chem. Soc., 2001, 123, 4304; (b) S. Lamansky, P. Djurovich, D. Murphy,
F. Abdel-Razzaq, R. Kwong, I. Tsyba, M. Bortz, B. Mui, R. Bau and
M. E. Thompson, Inorg. Chem., 2001, 40, 1704.
6 J. N. Demas and G. A. Crosby, J. Phys. Chem., 1971, 75, 991.
7 Y. Zhang, F. Huang, Y. Chi and A. K.-Y. Jen, Adv. Mater., 2008, 20,
1565.
Fig. 3 Normalized phosphorescence decays of 1, 2 and [(btp)2Ir(III)(acac)]
in PVK:PBD blends with a 70 : 30 wt.% ratio.
In summary, we prepared newly designed, red emitting,
carbazolyl-containing cyclometalated iridium(III) emitters that
were compared to a commonly used reference emitter. The in-
troduced triplet emitters revealed excellent performance in bench-
marking devices and are additionally furnished with preferably
8 X. Gong, S.-H. Lim, J. C. Ostrowski, D. Moses, C. J. Bardeen and G. C.
Bazan, J. Appl. Phys., 2004, 95, 948.
This journal is
The Royal Society of Chemistry 2010
Dalton Trans., 2010, 39, 8613–8615 | 8615
©