B. K. Maiti, H. Görls, O. Klobes, W. Imhof
FULL PAPER
topino, E. Nordlander, in Metal Clusters in Chemistry, vol. 2
(Eds.: P. Braunstein, L. A. Oro, P. R. Raithby), Wiley-VCH,
Weinheim, 1999, pp. 741–781.
tallized by diffusion of light petroleum into a solution in CHCl3 to
yield 5 (9 mg, 43%). The identity of 5 was demonstrated by com-
parison of analytical data with the compound produced from pho-
tolysis of [Ru3(CO)12] in CHCl3 in the presence of C2S2.[6] When
the above-mentioned solution of 5 was exposed to air, orange
block-shaped crystals of 6 were produced after 2 d of standing at
room temperature. Yield 8 mg (62%).
[5] a) R. D. Adams, J. Cluster Sci. 1992, 3, 263–273; b) H. Li,
G. B. Carpenter, D. A. Sweigart, Organometallics 2000, 19,
1823–1825; c) J. G. Planas, M. Hirano, S. Komiya, Chem. Com-
mun. 1999, 1793–1794; d) D. A. Vicic, W. D. Jones, J. Am.
Chem. Soc. 1999, 121, 7606–7617; e) C. A. Dullaghan, X.
Zhang, D. L. Greene, G. B. Carpenter, D. A. Sweigart, C. Cam-
iletti, E. Rajaseelan, Organometallics 1998, 17, 3316–3322; f)
A. W. Myers, W. D. Jones, Organometallics 1996, 15, 2905–
2917; g) J. H. Yamamoto, G. P. A. Yap, C. M. Jensen, J. Am.
Chem. Soc. 1991, 113, 5060–5061.
Compound 6: C18H36Cl4O2Ru2S4 (756.67): calcd. C 28.57, H 4.76,
S 16.93; found C 28.92, H 4.86, S 16.55. IR (KBr): ν = 1967 (br.,
˜
CO), 2873, 2929, 2965 (C–H of C2S2) cm–1. 1H NMR (CD2Cl2,
3
4
298 K): δ = 1.01 (dt, JH,H = 7.2 Hz, JH,H = 2.4 Hz, 6 H, CH3),
3
4
1.22 (dt, JH,H = 7.2 Hz, JH,H = 2.4 Hz, 6 H, CH3), 1.50–1.69 (m,
4 H, CH2), 1.89–2.08 (m, 4 H, CH2), 2.11–3.35 (m, 16 H, CH2)
ppm. 13C NMR (in CD2Cl2, 298 K): δ = 13.2 (br., CH3), 14.1
(CH3), 22.7 (CH2), 29.4 (CH2), 31.9 (CH2) ppm. MS (FAB, ni-
trobenzyl alcohol): m/z = 757 [M]+, 729 [MH – CO]+, 614 [M – 2
CO – 2 Cl – Me]+.
[6] B. Maiti, H. Görls, O. Klobes, W. Imhof, Dalton Trans. 2010,
39, 5713–5720.
[7] a) S. Rossi, J. Pursiainen, T. A. Pakkanen, J. Organomet. Chem.
1992, 436, 55–71; b) R. D. Adams, J. A. Belinski, J. Cluster Sci.
1990, 1, 319–333; c) S. Rossi, J. Pursiainen, T. A. Pakkanen,
Organometallics 1991, 10, 1390–1394; d) T. Teppana, S. Jaaske-
lainen, M. Ahlgren, J. Pursiainen, T. A. Pakkanen, J. Or-
ganomet. Chem. 1995, 486, 217–228.
[8] F. Dahan, S. Rabo, B. Chaudret, Acta Crystallogr., Sect. C
1984, 40, 786–788.
Acknowledgments
[9] R. D. Adams, J. H. Yamamoto, Organometallics 1995, 14,
3704–3711.
Financial support by the Thüringer Aufbaubank is gratefully
acknowledged.
[10] a) A. V. Marchenke, J. C. Huffman, P. Valerga, M. J. Tenorio,
M. C. Puerta, K. G. Caulton, Inorg. Chem. 2001, 40, 6444–
6450; b) G. Espino, F. A. Jalón, M. Maestro, B. R. Manzano,
M. Pérez-Manrique, A. C. Bacigalupe, Eur. J. Inorg. Chem.
2004, 2542–2552; c) B. Deschamps, F. Mathey, J. Fischer, J. H.
Nelson, Inorg. Chem. 1984, 23, 3455–3462; d) V. Cadierno, P.
Crochet, J. Díez, S. E. García-Garrido, J. Gimeno, S. García-
Granda, Organometallics 2003, 22, 5226–5234; e) S. D. Drouin,
S. Monfette, D. Amoroso, G. P. A. Yap, D. E. Fogg, Organome-
tallics 2005, 24, 4721–4728; f) E. Mothes, S. Sentets, M. A. Lu-
quin, R. Mathieu, N. Lugan, G. Lavigne, Organometallics 2008,
27, 1193–1206; g) T. G. Southern, P. H. Dixneuf, J. Y. Le Mar-
ouille, D. Grandjean, Inorg. Chem. 1979, 18, 2987–2991.
[11] N. V. Russavskaya, N. A. Korchevin, O. V. Alekminskaya, E. N.
Sukhomazova, E. P. Levanova, E. N. Deryagina, Russ. J. Org.
Chem. 2002, 38, 1445–1448.
[12] D. D. Perrin, W. L. F. Armarego, D. R. Perrin, Purification of
Laboratory Chemicals, Pergamon Press, New York, 1980.
[13] COLLECT, Data Collection Software, B. V. Nonius , Nether-
lands, 1998.
[14] Z. Otwinowski, W. Minor, Processing of X-ray Diffraction Data
Collected in Oscillation Mode in Methods in Enzymology (Eds.:
C. W. Carter, R. M. Sweet), Academic Press, 1997, vol. 276
(“Macromolecular Crystallography”), part A, pp. 307–326.
[15] G. M. Sheldrick, Acta Crystallogr., Sect. A 1990, 46, 467–473.
[16] G. M. Sheldrick, Acta Crystallogr., Sect. A 2008, 64, 112–122.
Received: August 10, 2010
[1] N. N. Greenwood, A. Earnshaw, Chemistry of the Elements,
VCH, Weinheim, 1988.
[2] For recent reviews, see: a) H. Rang, J. Kann, V. Oja, Oil Shale
2006, 23, 164–176; b) R. A. Pandey, S. Malhotra, Crit. Rev.
Env. Sci. Technol. 1999, 29, 229–268; c) D. J. Monticello,
CHEMTECH 1998, 28, 38–45.
[3] a) C. Gandolfi, M. Heckenroth, A. Neels, G. Laurenczy, M.
Albrecht, Organometallics 2009, 28, 5112–5121; b) Y. Ohki, Y.
Takikawa, H. Sadohara, C. Kesenheimer, B. Engendahl, E. Ka-
patina, K. Tatsumi, Chem. Asian J. 2008, 3, 1625–1635; c) A.
Ben-Asuly, E. Tzur, C. E. Diesendruck, M. Sigalov, I. Gold-
berg, N. G. Lemcoff, Organometallics 2008, 27, 811–813; d) S.
Takemoto, H. Kawamura, Y. Yamada, T. Okada, A. Ono, E.
Yoshikawa, Y. Mizobe, M. Hidai, Organometallics 2002, 21,
3897–3904; e) T. Okumura, Y. Morishima, H. Shiozaki, T.
Yagju, Y. Funahashi, T. Ozawa, K. Jitsukawa, H. Masuda,
Bull. Chem. Soc. Jpn. 2007, 80, 507–517; f) D. P. Riley, Inorg.
Chim. Acta 1985, 99, 5–11; g) D. P. Riley, J. D. Oliver, Inorg.
Chem. 1986, 25, 1814–1821; h) D. P. Riley, J. D. Oliver, Inorg.
Chem. 1986, 25, 1821–1825; i) D. P. Riley, J. D. Oliver, Inorg.
Chem. 1986, 25, 1825–1830; j) D. P. Riley, M. R. Thompson, J.
Lyon III, J. Coord. Chem. 1989, 19, 49–59.
[4] a) E. Bouwman, W. L. Driessen, J. Reedijk, Coord. Chem. Rev.
1990, 104, 143–172; b) J.-R. Li, X.-H. Bu, Eur. J. Inorg. Chem.
2008, 27–40; c) M. Brorson, J. D. King, K. Kiriakidou, F. Pres-
Published Online: February 23, 2011
1552
www.eurjic.org
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2011, 1545–1552