Article
Organometallics, Vol. 29, No. 23, 2010 6309
(e.g., eqs 2 and 3). This Markovnikov selectivity observed
with the latter catalysts is thought to result from a pathway
involving insertion of alkyne into a M-SR bond (see more
below).6a,l
anti-Markovnikov products can be suppressed by the addi-
tion of a radical inhibitor, implicating a known, nonmetal-
centered, radical-mediated side reaction.5b-f Among the
most notable attractions of these actinide catalysts is their
demonstrated ability to accommodate a wide range of thiols.
While many late transition metal complexes are competent
to mediate this transformation with arylthiols,6 few have
exhibited the same activity with the less reactive aliphatic
thiols.6g,h,m,r,9 Kinetic and mechanistic studies of these
organoactinide-mediated transformations led to the proposed
insertion/protonolysis sequence of Scheme 1, where the
Markovnikov insertion of alkyne into a Th-SR bond is
turnover-limiting, followed by a very rapid, thiol-mediated
protonolysis of the vinyl sulfide group from the metal to yield
vinyl sulfide product and regenerate the catalyst. Examina-
tion of organoactinide-mediated hydrothiolation activity as
a function of substrate shows that while both steric encum-
brance and the electronic structure of the thiols and alkynes
influence hydrothiolation activity, thiol steric characteristics
dominate. Furthermore, the selectivity of this transforma-
tion scales inversely with the ability of a given substrate to
initiate and propagate the aforementioned radical side
reaction.5b-f
We previously communicated that organothorium and
organouranium complexes8 are highly selective catalysts
for the synthesis of Markovnikov vinyl sulfides.6e Interest-
ingly, it was also shown that the occasional formation of
(5) (a) Lo Conte, M.; Pacifico, S.; Chambery, A.; Marra, A.; Dondoni, A.
J. Org. Chem. 2010, 75, 4644–4647. (b) Capella, L.; Montevecchi, P. C.;
Navacchia, M. L. J. Org. Chem. 1996, 61, 6783–6789. (c) Benati, L.;
Capella, L.; Montevecchi, P. C.; Spagnolo, P. J. Chem. Soc., Perkin
Trans. 1995, 1035–1038. (d) Benati, L.; Montevecchi, P. C.; Spagnolo,
P. J. Chem. Soc., Perkin Trans. 1991, 2103–2109. (e) Ichinose, Y.;
Wakamatsu, K.; Nozaki, K.; Birbaum, J.-L.; Oshima, K.; Utimoto, K.
Chem. Lett. 1987, 16, 1647–1650. (f ) Griesbaum, K. Angew. Chem.,
Int. Ed. Engl. 1970, 9, 273–287.
Lanthanide complexes8k,10 are highly active and selective
reagents for analogous alkyne hydroamination,8i,11 hydro-
phosphination,11e,12 and hydroalkoxylation11e,13 processes.
However, organolanthanide complexes also exhibit large
Ln-SR (Ln = lanthanide) bond enthalpies14 and are known
to form thiolate aggregates,10e,15 raising concern about
whether the insertion of carbon-carbon unsaturations into
this type of bond is even possible. In light of the recently
(6) (a) Weiss, C. J.; Marks, T. J. J. Am. Chem. Soc. 2010, 132, 10533–
ꢀ
ꢀ
10546. (b) Corma, A.; Gonzalez-Arellano, C.; Iglesias, M.; Sanchez, F. Appl.
Catal., A 2010, 375, 49–54. (c) Ananikov, V. P.; Gayduk, K. A.; Orlov, N. V.;
Beletskaya, I. P.; Khrustalev, V. N.; Antipin, M. Y. Chem. Eur. J. 2010, 16,
;
2063–2071. (d) Field, L. D.; Messerle, B. A.; Vuong, K. Q.; Turner, P. Dalton
Trans. 2009, 3599–3614. (e) Weiss, C. J.; Wobser, S. D.; Marks, T. J. J. Am.
Chem. Soc. 2009, 131, 2062–2063. (f ) Sabarre, A.; Love, J. Org. Lett. 2008,
10, 3941–3944. (g) Shoai, S.; Bichler, P.; Kang, B.; Buckley, H.; Love, J. A.
Organometallics 2007, 26, 5778–5781. (h) Kondoh, A.; Yorimitsu, H.;
Oshima, K. Org. Lett. 2007, 9, 1383–1385. (i) Fraser, L. R.; Bird, J.; Wu,
Q.; Cao, C.; Patrick, B. O.; Love, J. A. Organometallics 2007, 26, 5602–
5611. ( j) Delp, S. A.; Munro-Leighton, C.; Goj, L. A.; Ramirez, M. A.;
Gunnoe, T. B.; Petersen, J. L.; Boyle, P. D. Inorg. Chem. 2007, 46, 2365–
2367. (k) Beletskaya, I. P.; Ananikov, V. P. Pure Appl. Chem. 2007, 79,
1041–1056. (l) Beletskaya, I. P.; Ananikov, V. P. Eur. J. Org. Chem. 2007,
3431–3444. (m) Ananikov, V. P.; Orlov, N. V.; Beletskaya, I. P.; Khrustalev,
V. N.; Antipin, M. Y.; Timofeeva, T. V. J. Am. Chem. Soc. 2007, 129, 7252–
7253. (n) Malyshev, D. A.; Scott, N. M.; Marion, N.; Stevens, E. D.;
Ananikov, V. P.; Beletskaya, I. P.; Nolan, S. P. Organometallics 2006, 25,
4462–4470. (o) Ananikov, V. P.; Zalesskiy, S. S.; Orlov, N. V.; Beletskaya,
I. P. Russ. Chem. Bull. 2006, 55, 2109–2113. (p) Ananikov, V. P.; Orlov,
N. V.; Beletskaya, I. P. Organometallics 2006, 25, 1970–1977. (q) Misumi,
Y.; Seino, H.; Mizobe, Y. J. Organomet. Chem. 2006, 691, 3157–3164.
(r) Cao, C.; Fraser, L. R.; Love, J. A. J. Am. Chem. Soc. 2005, 127, 17614–
17615. (s) Ananikov, V. P.; Malyshev, D. A.; Beletskaya, I. P.; Aleksandrov,
G. G.; Eremenko, I. L. Adv. Synth. Catal. 2005, 347, 1993–2001. (t) Kondo,
T.; Mitsudo, T. Chem. Rev. 2000, 100, 3205–3220. (u) Ogawa, A.; Ikeda, T.;
Kimura, K.; Hirao, T. J. Am. Chem. Soc. 1999, 121, 5108–5114.
(v) Kuniyasu, H.; Ogawa, A.; Sato, K.; Ryu, I.; Kambe, N.; Sonoda, N.
J. Am. Chem. Soc. 1992, 114, 5902–5903.
(9) This diminished activity is attributed to the greater RS-H bond
enthalpy in alihpatic versus aromatic thiols. See ref 6m.
(10) (a) Seitz, M.; Oliver, A. G.; Raymond, K. N. J. Am. Chem. Soc.
2007, 129, 11153–11160. (b) Evans, W. J.; Davis, B. L. Chem. Rev. 2002,
102, 2119–2136. (c) Molander, G. A.; Romero, J. A. C. Chem. Rev. 2002,
102, 2161–2186. (d) Aspinall, H. C. Chemistry of the f-Block Elements;
Taylor & Francis: Washington, D.C., 2001. (e) Aspinall, H. C.; Cunningham,
S. A.; Maestro, P.; Macaudiere, P. Inorg. Chem. 1998, 37, 5396–5398.
(11) (a) Broderick, E. M.; Gutzwiller, N. P.; Diaconescu, P. L.
Organometallics 2010, 29, 3242-3251. (b) M€uller, T. E.; Hultzsch, K. C.;
Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795–3892. (c)
ꢁ
Hartwig, J. F. Nature 2008, 455, 314–322. (d) Motta, A.; Fragala, I. L.;
Marks, T. J. Organometallics 2006, 25, 5533–5539. (e) Alonso, F.;
Beletskaya, I. P.; Yus, M. Chem. Rev. 2004, 104, 3079–3160. (f ) Motta,
A.; Lanza, G.; Fragala, I. L.; Marks, T. J. Organometallics 2004, 23, 4097–
4104. (g) Hong, S.; Marks, T. J. Acc. Chem. Res. 2004, 37, 673–686. (h)
Ackermann, L.; Bergman, R. G.; Loy, R. N. J. Am. Chem. Soc. 2003, 125,
11956–11963. (i) Hong, S.; Kawaoka, A. M.; Marks, T. J. J. Am. Chem. Soc.
2003, 125, 15878–15892. ( j) Hong, S.; Marks, T. J. J. Am. Chem. Soc. 2002,
124, 7886–7887. (k) Arredondo, V. M.; McDonald, F. E.; Marks, T. J.
Organometallics 1999, 18, 1949–1960. (l) Arredondo, V. M.; Tian, S.;
McDonald, F. E.; Marks, T. J. J. Am. Chem. Soc. 1999, 121, 3633–3639.
(m) Arredondo, V. M.; McDonald, F. E.; Marks, T. J. J. Am. Chem. Soc.
1998, 120, 4871–4872. (n) Haskel, A.; Straub, T.; Eisen, M. S. Organome-
tallics 1996, 15, 3773–3775. (o) Giardello, M. A.; Conticello, V. P.; Brard, L.;
Gagne, M. R.; Marks, T. J. J. Am. Chem. Soc. 1994, 116, 10241–10254. (p)
Li, Y.; Fu, P.-F.; Marks, T. J. Organometallics 1994, 13, 439. (q) Gagne,
M. R.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1992, 114, 275–294.
(7) With the noteable exception of Tp*Rh(PPh3)2 (ref 6i).
(8) (a) Schreckenbach, G.; Shamov, G. A. Acc. Chem. Res. 2010, 43,
19–29. (b) Schelter, E. J.; Wu, R.; Veauthier, J. M.; Bauer, E. D.; Booth, C. H.;
Thomson, R. K.; Graves, C. R.; John, K. D.; Scott, B. L.; Thompson, J. D.;
Morris, D. E.; Kiplinger, J. L. Inorg. Chem. 2010, 49, 1995–2007.
(c) Thomson, R. K.; Graves, C. R.; Scott, B. L.; Kiplinger, J. L. Dalton
Trans. 2010, Earlyview. (d) Cantat, T.; Scott, B. L.; Morris, D. E.; Kiplinger,
J. L. Inorg. Chem. 2009, 48, 2114–2127. (e) Cantat, T.; Graves, C. R.;
Jantunen, K. C.; Burns, C. J.; Scott, B. L.; Schelter, E. J.; Morris, D. E.; Hay,
P. J.; Kiplinger, J. L. J. Am. Chem. Soc. 2008, 130, 17537–17551. (f ) Fox,
A. R.; Bart, S. C.; Meyer, K.; Cummins, C. C. Nature 2008, 455, 341–349.
(g) Andrea, T.; Barnea, E.; Eisen, M. S. J. Am. Chem. Soc. 2008, 130, 2454–
2455. (h) Wang, J.; Gurevich, Y.; Botoshansky, M.; Eisen, M. S. Organo-
metallics 2008, 27, 4494–4504. (i) Andrea, T.; Eisen, M. S. Chem. Soc. Rev.
2008, 37, 550–567. ( j) Wang, J.; Gurevich, Y.; Botoshansky, M.; Eisen, M. S.
J. Am. Chem. Soc. 2006, 128, 9350–9351. (k) Cotton, S. Lanthanide and
Actinide Chemistry; John Wiley & Sons, Ltd: Uppingham, Rutland, UK,
2006. (l) Dash, A. K.; Wang, J. Q.; Eisen, M. S. Organometallics 1999, 18,
4724–4741. (m) Marks, T. J. Science 1982, 217, 989–97.
(12) (a) Perrier, A.; Comte, V.; Moıse, C.; Le Gendre, P. Chem. Eur.
;
J. 2009, 16, 64–67. (b) Douglass, M. R.; Marks, T. J. J. Am. Chem. Soc.
2000, 122, 1824–1825. (c) Douglass, M. R.; Stern, C. L.; Marks, T. J. J. Am.
Chem. Soc. 2001, 123, 10221–10238. (d) Kawaoka, A. M.; Douglass, M. R.;
ꢁ
Marks, T. J. Organometallics 2003, 22, 4630–4632. (e) Motta, A.; Fragala,
I. L.; Marks, T. J. Organometallics 2005, 24, 4995–5003. (f ) Nagata, S.;
Kawaguchi, S.-i.; Matsumoto, M.; Kamiya, I.; Nomoto, A.; Sonoda, M.;
Ogawa, A. Tetrahedron Lett. 2007, 48, 6637–6640. (g) Sadow, A. D.;
Haller, I.; Fadini, L.; Togni, A. J. Am. Chem. Soc. 2004, 126, 14704–14705.
(h) Takaki, K.; Koshoji, G.; Komeyama, K.; Takeda, M.; Shishido, T.; Kitani,
A.; Takehira, K. J. Org. Chem. 2003, 68, 6554–6565. (i) Wicht, D. K.;
Kourkine, I. V.; Lew, B. M.; Nthenge, J. M.; Glueck, D. S. J. Am. Chem. Soc.
1997, 119, 5039–5040.