Communication
ChemComm
National Research Foundation Investigatorship (No. NRF-
NRFI2018-03).
Conflicts of interest
There are no conflicts to declare.
Notes and references
1 (a) D. M. Kweekel, H. Gelderblom and H. J. Guchelaar, Cancer Treat.
Rev., 2005, 31, 90–105; (b) T. Alcindor and N. Beauger, Curr. Oncol.,
2011, 18, 18–25.
2 (a) J. Della Rocca, R. C. Huxford, E. Comstock-Duggan and W. Lin,
Angew. Chem., Int. Ed., 2011, 50, 10330–10334; (b) Y. R. Zheng,
K. Suntharalingam, T. C. Johnstone and S. J. Lippard, Chem. Sci.,
2015, 6, 1189–1193; (c) J. Xu, Y. Kuang, R. Lv, P. Yang, C. Li, H. Bi,
B. Liu, D. Yang, Y. Dai, S. Gai, F. He, B. Xing and J. Lin, Biomaterials,
2017, 130, 42–55.
3 P. Ma, H. Xiao, C. Li, Y. Dai, Z. Cheng, Z. Hou and J. Lin, Mater.
Today Chem., 2015, 18, 554–564.
4 (a) Z. Guo, Y. Zou, H. He, J. Rao, S. Ji, X. Cui, H. Ke, Y. Deng, H. Yang,
C. Chen, Y. Zhao and H. Chen, Adv. Mater., 2016, 28, 10155–10164;
(b)Y. Yuan, C.-J. ZhangandB. Liu,Chem. Commun., 2015, 51, 8626–8629;
(c) S. He, C. Li, Q. Zhang, J. Ding, X.-J. Liang, X. Chen, H. Xiao, X. Chen,
D. Zhou and Y. Huang, ACS Nano, 2018, 12, 7272–7281.
Fig. 4 (a) In vitro cytotoxicity of CD-spermine: oxliPt(IV)-chol and
CD-NH2: oxliPt(IV)-chol nanoparticles incubated with HCT116 colorectal
cancer cells for 24 h and 48 h. Competitive intracellular uptake of
CD-spermine: oxliPt(IV)-chol nanoparticles by spermine: (b) CLSM images
and (c) flow cytometry profiles of HCT116 cells without and with
pre-treatment of spermine prior to the incubation with FITC-labelled
CD-spermine: oxliPt(IV)-chol nanoparticles. Cell nuclei were stained by
H33342. Scale bar: 50 mm.
5 (a) J. J. Wilson and S. J. Lippard, Chem. Rev., 2014, 114, 4470–4495;
(b) M. D. Hall and T. W. Hambley, Coord. Chem. Rev., 2002, 232,
49–67; (c) T. C. Johnstone, K. Suntharalingam and S. J. Lippard,
Chem. Rev., 2016, 116, 3436–3486.
intensity of cells incubated with FITC labelled CD-spermine:
oxliPt(IV)-chol nanoparticles was significantly higher than that
of the spermine-pretreated group, once again demonstrating
that the uptake of the nanoparticles was closely related to the
polyamine transporter.
6 (a) A. G. Cheetham, R. W. Chakroun, W. Ma and H. Cui, Chem. Soc.
Rev., 2017, 46, 6638–6663; (b) C. Wang, Z. Wang and X. Zhang, Acc.
Chem. Res., 2012, 45, 608–618.
7 (a) J. Zhou, G. Yu and F. Huang, Chem. Soc. Rev., 2017, 46,
7021–7053; (b) G. Yu, X. Zhao, J. Zhou, Z. Mao, X. Huang,
Z. Wang, B. Hua, Y. Liu, F. Zhang, Z. He, O. Jacobson, C. Gao,
W. Wang, C. Yu, X. Zhu, F. Huang and X. Chen, J. Am. Chem. Soc.,
2018, 140, 8005–8019; (c) G. Yu, Z. Yang, X. Fu, B. C. Yung, J. Yang,
Z. Mao, L. Shao, B. Hua, Y. Liu, F. Zhang, Q. Fan, S. Wang,
O. Jacobson, A. Jin, C. Gao, X. Tang, F. Huang and X. Chen, Nat.
Commun., 2018, 9, 766; (d) J. Zhou, Y. Zhang, G. Yu, M. R. Crawley,
C. R. P. Fulong, A. E. Friedman, S. Sengupta, J. Sun, Q. Li, F. Huang
and T. R. Cook, J. Am. Chem. Soc., 2018, 140, 7730–7736;
In summary, redox-responsive supramolecular prodrug
nanoparticles have been successfully constructed via host–
guest interaction. OxliPt(IV)-chol and CD-spermine not only
serve as the building units, but also as the cargo and an active
targeting component, respectively. Thus, the supramolecular
nanoparticles prepared using this unique strategy integrate
the advantages of active targeting, prodrug, and carrier-free
systems, while simplifying the assembly complexity. The
prodrug could be released under a reductive cellular micro-
environment, allowing for controlled drug release. Importantly,
in vitro experiments have confirmed that the CD-spermine:
oxliPt(IV)-chol nanoparticles offered comparable cytotoxicity as
free platinum drugs and provided specificity to cancer cells
based on their redox responsiveness and targeting capability.
This work presents an alternative strategy to the development
of smart supramolecular nanocarriers, showing great potential
in the field of controlled drug release and delivery toward
cancer treatment.
´
(e) F. Danhier, O. Feron and V. Preat, J. Controlled Release, 2010,
148, 135–146; ( f ) K. Greish, in Cancer Nanotechnology: Methods and
Protocols, ed. S. R. Grobmyer and B. M. Moudgil, Humana Press,
Totowa, NJ, 2010, pp. 25–37.
8 (a) N. Graf and S. J. Lippard, Adv. Drug Delivery Rev., 2012, 64,
993–1004; (b) K. Lemma, A. M. Sargeson and L. I. Elding, J. Chem.
Soc., Dalton Trans., 2000, 1167–1172.
9 R. O. Williams Iii, V. Mahaguna and M. Sriwongjanya, Eur. J. Pharm.
Biopharm., 1998, 46, 355–360.
10 (a) A. E. Pegg, J. Biol. Chem., 2016, 291, 14904–14912; (b) T. R. Murray-
Stewart, P. M. Woster and R. A. Casero, Biochem. J., 2016, 473,
2937–2953.
11 (a) R. A. Casero, Jr. and L. J. Marton, Nat. Rev. Drug Discovery, 2007,
6, 373–390; (b) A. J. Palmer and H. M. Wallace, Amino Acids, 2010, 38,
415–422.
12 J. M. Woynarowski, W. G. Chapman, C. Napier, M. C. S. Herzig and
P. Juniewicz, Mol. Pharmacol., 1998, 54, 770–777.
13 (a) S. S. S. Beevi, A. M. H. Rasheed and A. Geetha, Jpn. J. Clin. Oncol.,
2004, 34, 379–385; (b) A. I. Fiaschi, A. Cozzolino, G. Ruggiero and
G. A. Giorgi, Eur. Rev. Med. Pharmacol. Sci., 2005, 9, 361–367.
This research was supported by the Singapore Academic
Research Fund (No. RG11/17 and RG114/17) and the Singapore
This journal is ©The Royal Society of Chemistry 2018
Chem. Commun., 2018, 54, 12762--12765 | 12765