wide range of biological and medicinal activities, i.e.,
antimicrobial, anti-inflammatory, antidepressant, antirheu-
matic, and anti-infective properties.7 There are a number of
methods that have been developed for the synthesis of ring-
fused quinazolinones;7,8 however, these approaches often
suffer from the poor availability of the requisite o-aminoben-
zoic acid derivatives, multistep reactions, and low yields.
Recently several new synthetic strategies have been described
including radical cascade reactions,9 R-functionalization
reactions of cyclic amines,10 solid-supported synthesis,11 and
microwave irradiation.12
The starting materials, carbodiimides (4a-d), were ef-
ficiently prepared in 83-93% yields by metathesis reactions
of the corresponding isocyanates (2) with N-(o-iodoaryl)
triphenyliminophosphoranes (3) (Scheme 1).
Scheme 1. Synthesis of Carbodiimides 4a-d
Transition-metal-catalyzed carbonylation reactions, par-
ticularly palladium-catalyzed carbonylations, are unique,
powerful, and versatile tools for the synthesis of carbonyl-
containing heterocyclic compounds.13 We have described
new protocols for the synthesis of ring-fused isoquinolino-
nes,14 lactones,15 1,3-benzothiazin-2-ones,16 quinazolin-
4(3H)-ones,17 different ring-sized lactams,18 1,4-benzo or
pyrido-oxazepinones,19 and 2-acetyl-3,4-dihydronaphthale-
nones.20 Herein, we report a highly novel and efficient
domino strategy to synthesize 6-substituted quinazolino[3,2-
a]quinazolinones.
We began our investigation with N,N′-di-o-iodophenyl
carbodiimide (4a) and hexylamine as the model substrates
to examine the reaction conditions, which we previously
developed for the synthesis of 2-heteroquinazolin-4(3H)-ones
from the carbodiimides (Table 1) [4 mol % Pd(OAc)2, 8 mol
(4) Ma, Z.-Z.; Hano, Y.; Nomura, T.; Chen, Y.-J. Heterocycles 1997,
46, 541.
(5) (a) Sen, A. K.; Mahato, S. B.; Dutta, N. L. Tetrahedron Lett. 1974,
7, 609. (b) Bergman, J.; Egestad, B.; Lindstro¨m, J. O. Tetrahedron Lett.
1977, 18, 2625.
Table 1. Optimization of the Reaction Conditions Using
N,N′-Di-o-iodophenyl Carbodiimide with Hexylaminea
(6) (a) Amin, A. H.; Mehta, D. R. Nature 1959, 183, 1317. (b) Mehta,
D. R.; Naravane, J. S.; Desai, R. M. J. Org. Chem. 1963, 28, 445.
(7) For selected recent reviews on the chemistry of quinazolinone
alkaloids, see: (a) Witt, A.; Bergman, J. Curr. Org. Chem. 2003, 7, 659.
(b) Connolly, D. J.; Cusack, D.; O’Sullivan, T. P.; Guiry, P. J. Tetrahedron
2005, 61, 10153. (c) Mhaske, S. B.; Argade, N. P. Tetrahedron 2006, 62,
9787.
(8) For selected papers on the synthesis of quinanolino[3,2-a]quinazoli-
nones, see: (a) Butler, K.; Partridge, M. W. J. Chem. Soc. 1959, 1512. (b)
Peet, N. P.; Sunder, S.; Brawn, W. H. J. Org. Chem. 1976, 41, 2728. (c)
Palazzo, S.; Giannola, L. I.; Neri, M. J. Heterocycl. Chem. 1975, 12, 1077.
(d) Molina, P.; Alajar´ın, M.; Vidal, A. Tetrahedron 1989, 45, 4263. (e)
entry
[Pd]
solvent
t (°C)
yield (%)b
1
2
3
4
5
6
Pd(OAc)2
Pd(OAc)2
Pd2(dba)3·CHCl3
Pd(OAc)2
Pd(OAc)2
THF
THF
THF
CH2Cl2
PhMe
THF
80
120
120
120
120
120
75
81
81
78
79
80c
Ram, V. J.; Kushwaha, D. S. Liebigs Ann. Chem. 1990, 701
.
(9) (a) Servais, A.; Azzouz, M.; Lopes, D.; Courillon, C.; Malacria, M.
Angew. Chem., Int. Ed. 2007, 46, 576. (b) Larraufie, M.-H.; Ollivier, C.;
Fensterbank, L.; Malacria, M.; Lacoˆte, E. Angew. Chem., Int. Ed. 2010,
49, 2178. (c) Larraufie, M.-H.; Courillon, C.; Ollivier, C.; Lacoˆte, E.;
Malacria, M.; Fensterbank, L. J. Am. Chem. Soc. 2010, 132, 4381.
(10) Zhang, C.; De, C. K.; Mal, R.; Seidel, D. J. Am. Chem. Soc. 2008,
130, 416.
Pd(OAc)2
a All reactions were carried out using 0.50 mmol of 4a, 0.55 mmol of
5a, [Pd]/PPh3/4a ) 4:8:100, 3.0 equiv of base, 6 mL of solvent, 500 psi of
CO, 15 h. b Isolated yield. c 1.0 mmol of 5a.
(11) Kamal, A.; Shankaraiah, N.; Devaiah, V.; Reddy, K. L. Tetrahedron
Lett. 2006, 47, 9025.
(12) Tseng, M.-C.; Yang, H. Y.; Chu, Y.-H. Org. Biomol. Chem. 2010,
8, 419.
(13) (a) Handbook of Organopalladium Chemistry for Organic Synthesis;
Negishi, E., de Meijere, A., Eds.; John Wiley & Sons: New York, 2002;
Vol. 2, p 2309. (b) Skoda-Foldes, R.; Kollar, L. Curr. Org. Chem. 2002, 6,
1097. (c) Beller, M.; Cornils, B.; Frohning, C. D.; Kohlpaintner, C. W. J.
Mol. Catal. A 1995, 104, 17. (d) Tsuji, J. Palladium Reagents and Catalysis:
InnoVation in Organic Synthesis; John Wiley & Sons: Chichester, U.K.,
1995. (e) Colquhoun, H. M., Thompson, D. J., Twigg, M. V. Carbonylation,
Direct Synthesis of Carbonyl Compounds; Plenum Press: New York, 1991.
(14) (a) Chouhan, G.; Alper, H. Org. Lett. 2008, 10, 4987. (b) Chouhan,
G.; Alper, H. J. Org. Chem. 2009, 74, 6181.
% PPh3, K2CO3, 500 psi of CO, in THF].17a We were
gratified to find that the desired 6-hexyl-12H-quinazolino-
[3,2-a]quinazoline-5(6H),12-dione (6a) was obtained in 75%
isolated yield. Performing the same reaction at 120 °C
resulted in the isolation of 6a in 81% yield (entry 2). Other
reaction parameters, i.e., solvents and palladium catalyst,
were investigated (entries 3-5), but no significant reactivity
differences were observed. Hence, the simple system,
Pd(OAc)2 (4%)-PPh3 (8%)-K2CO3, was chosen as the
optimized catalytic system. It is noteworthy that using 2.0
equiv of hexylamine as the nucleophile afforded no byprod-
ucts (entry 6), demonstrating that the intramolecular car-
boxamidation is very regioselective to form the tetracyclic
quinazolinone (6a).
(15) (a) Cao, H.; Xiao, W.-J.; Alper, H. AdV. Synth. Catal. 2006, 348,
1807. (b) Li, Y.; Alper, H. Org. Lett. 2006, 8, 5199.
(16) Rescourio, G.; Alper, H. J. Org. Chem. 2008, 73, 1612.
(17) (a) Zeng, F. L.; Alper, H. Org. Lett. 2010, 12, 1188. (b) Zheng, Z.;
Alper, H. Org. Lett. 2008, 10, 829.
(18) (a) Lu, S. M.; Alper, H. J. Am. Chem. Soc. 2008, 130, 6451. (b)
Lu, S. M.; Alper, H. Chem.sEur. J. 2007, 13, 5908. (c) Lu, S. M.; Alper,
H. J. Am. Chem. Soc. 2005, 127, 14776.
(19) Chouhan, G.; Alper, H. Org. Lett. 2010, 12, 192.
(20) Zheng, Z.; Alper, H. Org. Lett. 2009, 11, 3278.
Org. Lett., Vol. 12, No. 16, 2010
3643