Hydrogen Bonding in Electron Transfer
A R T I C L E S
known for their unique electron-accepting features. In fact, these
three-dimensional electron acceptors hold great promise on
account of their small reorganization energies in electron transfer
reactions and have exerted noteworthy impact on the improve-
ment of light-induced charge-separation.14 In short, porphyrins/
metalloporphyrins and fullerenes are molecular architectures
ideally suited for devising integrated, multicomponent model
systems to transmit and process solar energy.15-17 Photoexci-
tation of the porphyrin/metalloporphyrin by visible light is
readily followed by an electron transfer to guarantee the
formation of a radical ion pair state, that is, the one-electron
oxidized radical cation and the one-electron reduced radical
anion of the porphyrin and the fullerene, respectively.8-13
The most far-reaching observation is that charge-recombina-
tion in metalloporphyrin/fullerene couples is located deep in
the “inverted region” of the Marcus parabola, regardless of
linkage, distance, and orientation. By contrast, lowering the
driving force via replacing the metalloporphyrins with the better
electron donors ferrocene or tetrathiafulvalene, while keeping
all other parameters (i.e., distance, acceptor, solvent, tempera-
ture, etc.) constant, shifts the dynamics into the normal region.
This variation is of great advantage in determining parameters
such as electronic coupling (V), reorganization energy (λ), and
attenuation factor (ꢀ) with high accuracy.18 These parameters
have key character for material design considerations with the
objective to prolong the lifetime of the energetic radical ion
pair states, while, simultaneously, optimizing the efficiency of
charge separation.
Figure 1. Schematic representation of the complementary hydrogen-
bonding motif of a cyanuric acid derivative and a Hamilton receptor.
comprising noncovalent electrostatic interactions, where op-
positely charged fullerenes and porphyrins/cytochrome C interact
tightly with each other. Sufficiently strong electronic couplings
powered an intrahybrid charge separation in these nanohybrids.15
This approach turned out to be very promising for constructing
photovoltaic devices with efficient solar energy conversion
performances.19
Nevertheless, the most compelling supramolecular motif is
hydrogen bonding. Although hydrogen bonding bears great
potential for the realization of highly directional self-assemblies,
only a few examples of electron donor-acceptor nanohybrids,
using porphyrins/metalloporphyrins and fullerenes, have been
reported so far.17,19 We have recently introduced the Hamilton-
receptor/cyanuric acid binding motif (Figure 1)20 to self-
assemble porphyrins/metalloporphyrins together with fulleroden-
drimers17a,b as well as hydrogen-bonded complexes containing
N,N-dimethylanilines, flavines,21a and supramolecular wires.21b
Importantly, the six-point hydrogen-bonding motif leads to
comparatively strong binding between hosts and guests with
association constants Kass that range in apolar solvents (i.e.,
Up to now, most electron donor-acceptor systems are based
on the use of covalent linkages. Hereby, the linkage mediates
the distance, spatial orientation, and flexibility between the donor
and acceptor components. Much less is, however, known about
noncovalent linkages en-route toward electron donor-acceptor
nanohybrids and the function of the intervening spacers.17 In a
recent example, we introduced electron donor-acceptor systems
dichloromethane and toluene) from 103 to 1012 M-1
.
(14) Guldi, D. M. Chem. Soc. ReV. 2002, 31, 22–36.
(19) (a) Sanchez, L.; Martin, N.; Guldi, D. M. Angew. Chem. 2005, 117,
5508–5516; Angew. Chem., Int. Ed. 2005, 44, 5374-5382. (b)
Sanchez, L.; Sierra, M.; Martin, N.; Myles, A. J.; Dale, T. J.; Rebek,
J., Jr.; Seitz, W.; Guldi, D. M. Angew. Chem. 2006, 118, 4753–4757;
Angew. Chem., Int. Ed. 2006, 45, 4637-4641. (c) Sandanayaka,
A. S. D.; Araki, Y.; Ito, O.; Chitta, R.; Gadde, S.; D’Souza, F. Chem.
Commun. 2006, 4327–4329. (d) D’Souza, F.; Chitta, R.; Gadde, S.;
Zandler, M. E.; Sandanayaka, A. S. D; Araki, Y.; Ito, O. Chem.
Commun. 2005, 1279–1281. (e) D’Souza, F.; Chitta, R.; Gadde, S.;
McCarty, A. L.; Karr, P. A.; Zandler, M. E.; Sandanayaka, A. S. D.;
Araki, Y.; Ito, O. J. Phys. Chem. B 2006, 110, 5905–5913. (f) D’Souza,
F.; El-Khouly, M. E.; Gadde, S.; Zandler, M. E.; McCarty, A. L.;
Araki, Y.; Ito, O. Tetrahedron 2006, 62, 1967–1978. (g) D’Souza,
F.; Chitta, R.; Gadde, S.; Rogers, L. M.; Karr, P. A.; Zandler, M. E.;
Sandanayaka, A. S. D.; Araki, Y.; Ito, O. Chem.-Eur. J. 2007, 13,
916–922.
(15) (a) D’Souza, F.; Deviprasad, G. R.; El-Khouly, M. E.; Fujitsuka, M.;
Ito, O. J. Am. Chem. Soc. 2001, 123, 5277–5284. (b) Regev, A.; Galili,
T.; Levanon, H.; Schuster, D. I. J. Phys. Chem. A 2006, 110, 8593–
8598. (c) Guldi, D. M.; Zilbermann, I.; Anderson, G.; Li, A.; Balbinot,
D.; Jux, N.; Hatzimarinaki, M.; Hirsch, A.; Prato, M. Chem. Commun.
2004, 6, 726–727. (d) Balbinot, D.; Atalick, S.; Guldi, D. M.;
Hatzimarinaki, M.; Hirsch, A.; Jux, N. J. Phys. Chem. B 2003, 107,
13273–13279. (e) Hartnagel, U.; Balbinot, D.; Jux, N.; Hirsch, A. Org.
Biomol. Chem. 2006, 4, 1785–1795.
(16) (a) D’Souza, F.; El-Khouly, M. E.; Gadde, S.; Zandler, M. E.; McCarty,
A. L.; Araki, Y.; Ito, O. Tetrahedron 2005, 62, 1967–1978. (b) Guldi,
D. M. Chem. Commun. 2000, 5, 321–327. (c) Sessler, J. S.; Wang,
B.; Springs, S. L.; Brown, C. T. In CromprehensiVe Supramolecular
Chemistry; Atwood, J. L., Davies, J. E. D., MacNicol, D. D., Vo¨gtle,
F., Eds.; Pergamon: New York, 1996; Chapter 9. (d) Piotrowiak, P.
Chem. Soc. ReV. 1999, 28, 143–150. (e) Wasielewski, M. R. Acc.
Chem. Res. 2009, 42, 1910–1921.
(20) (a) Chang, S.-K.; Hamilton, A. D. J. Am. Chem. Soc. 1988, 110, 1318–
1319. (b) Hager, K.; Franz, A.; Hirsch, A. Chem.-Eur. J. 2006, 12,
2663–2679. (c) Hager, K.; Hartnagel, U.; Hirsch, A. Eur. J. Org. Chem.
2007, 12, 1942–1956. (d) Maurer, K.; Hager, K.; Hirsch, A. Eur. J.
Org. Chem. 2006, 15, 3338–3347. (e) Franz, A.; Bauer, W.; Hirsch,
A. Angew. Chem. 2005, 117, 1588–1561; Angew. Chem., Int. Ed. 2005,
44, 1564-1567.
(17) (a) Sessler, J. L.; Wang, B.; Harriman, A. J. Am. Chem. Soc. 1993,
115, 10418–10419. (b) de Rege, P. J. F.; Williams, S. A.; Therien,
M. J. Science 1995, 269, 1409–1413. (c) Rosenthal, J.; Hodgkiss, J. M.;
Young, E. R.; Nocera, D. G. J. Am. Chem. Soc. 2006, 128, 10474–
10483. (d) D’Souza, F.; Gadde, S.; Islam, D.-M. S.; Pang, S.-C.;
Schumacher, A. L.; Zandler, M. E.; Horie, R.; Araki, Y.; Ito, O. Chem.
Commun. 2007, 480–482. (e) Gadde, S.; Islam, D.-M. S.; Wijesinghe,
C. A.; Subbaiyan, N. K.; Zandler, M. E.; Araki, Y.; Ito, O.; D’Souza,
F. J. Phys. Chem. C 2007, 111, 12500–12503. (f) Wessendorf, F.;
Gnichwitz, J.-F.; Sarova, G. H.; Hager, K.; Hartnagel, U.; Guldi, D. M.;
Hirsch, A. J. Am. Chem. Soc. 2007, 129, 16057–16071. (g) Gnichwitz,
J.-F.; Wielopolski, M.; Hartnagel, K.; Hartnagel, U.; Guldi, D. M.;
Hirsch, A. J. Am. Chem. Soc. 2008, 130, 8491–8501. (h) D’Souza,
F.; Venukadasula, G. M.; Yamanaka, K.-I.; Subbaiyan, N. K.; Zandler,
M. E.; Ito, O. Org. Biomol. Chem. 2009, 7, 1076–1080.
(21) (a) Murakami, M.; Ohkubo, K.; Hasobe, T.; Sgobba, V.; Guldi, D. M.;
Wessendorf, F.; Hirsch, A.; Fukuzumi, S. J. Mater. Chem. 2010, 20,
1457–1466. (b) Wessendorf, F.; Hirsch, A. Tetrahedron 2008, 64,
11480–11489.
(22) (a) Goldsmith, R. H.; Sinks, L. E.; Kelley, R. F.; Betzen, L. J.; Liu,
W.; Weiss, E. A.; Ratner, M. A.; Wasielewski, M. R. Proc. Natl. Acad.
Sci. U.S.A. 2005, 102, 3540–3545. (b) Weiss, E. A.; Tauber, M. J.;
Kelley, R. F.; Ahrens, M. J.; Ratner, M. A.; Wasielewski, M. R. J. Am.
Chem. Soc. 2005, 127, 11842–11850. (c) Tauber, M. J.; Kelley, R. F.;
Giaimo, J. M.; Rybtchinski, B.; Wasielewski, M. R. J. Am. Chem.
Soc. 2006, 128, 1782–1783. (d) Goldsmith, R. H.; Wasielewski, M. R.;
Ratner, M. A. J. Phys. Chem. A 2006, 110, 20258–20262.
(18) (a) Guldi, D. M.; Fukuzumi, S. J. Porphyrins Phthalocyanines 2002,
6, 289–295. (b) Guldi, D. M. Pure Appl. Chem. 2003, 75, 1069–1075.
9
J. AM. CHEM. SOC. VOL. 132, NO. 31, 2010 10787