Mendeleev Commun., 2013, 23, 147–149
Table 1 Effects of dicoumarol and polyalkoxy-3-phenylcoumarins on sea
This work was supported by a grant from Chemical Block Ltd.
We thank the National Cancer Institute (NCI) (Bethesda,
MD, USA) for screening compound 9a under the Developmental
Therapeutics Program at NCI (Anti-cancer Screening Program;
http://dtp.cancer.gov).
urchin embryos.
a
EC/mm
Compound
Cleavage alteration Cleavage arrest Embryo spinning
Dicoumarol 10
40
4
>50
>5
>4
>4
>4
Online Supplementary Materials
Supplementary data associated with this article can be found
in the online version at doi:10.1016/j.mencom.2013.05.009.
9a
9b
9c
9d
0.2
4
>4
>4
>4
1
>4
References
a The sea urchin embryo assay was conducted as described in ref. 18.
Fertilized eggs/embryos were exposed continuously to 2-fold decreasing
concentrations of a compound. Duplicate measurements showed no dif-
ferences in effective threshold concentration (EC) values. At these concen-
trations, all tested molecules caused 100% cleavage alteration and embryo
death before hatching, whereas at 2-fold lower concentrations, the com-
pounds failed to produce any effect.
2 V.V. Semenov,V.A. Rusak, E. M. Chartov, M. I. Zaretsky, L. D. Konyushkin
S. I. Firgang, A. O. Chizhov, V. V. Elkin, N. N. Latin, V. M. Bonashek and
O. N. Stas’eva, Russ. Chem. Bull., Int. Ed., 2007, 56, 2448 (Izv. Akad.
Nauk, Ser. Khim., 2007, 2364).
,
3 R. E. Reyes and A. G. Gonzalez, Phytochemistry, 1970, 9, 833.
4 A. A. Semenov, Ocherki khimii prirodnykh soedinenii (Essays on Chemistr
y
of Natural Compounds), Nauka, Novosibirsk, 2000, p.664 (in Russian).
5 T. S. Wu, Z. J. Tsang, P. L. Wu, F. W. Lin, C. Y. Li, C. M. Teng and
K. H. Lee, Bioorg. Med. Chem., 2001, 9, 77.
The results obtained in the sea urchin embryo assay for the
target compounds are shown in Table 1. Figure 2 illustrates mor-
phological changes of arrested eggs caused by dicoumarol and
3-phenylcoumarin 9a.
Dicoumarol caused cleavage alteration and arrest; in this case,
a mitotic spindle was distinctly visible as a light rounded spot in
the egg center [Figure 2(b)]. The results confirmed the previously
described mechanism of dicoumarol cytostatic effect based on
cell cycle arrest in mitosis due to microtubule stabilization and
alteration of the mitotic spindle dynamics.15
6 D. Maes, S. Vervisch, S. Debenedetti, C. Davio, S. Mangelinckx,
N. Giubellina and N. De Kimpe, Tetrahedron, 2005, 61, 2505.
7 M. E. Riveiro, C. Shayo, F. Monczor, N. Fernandez,A. Baldi, N. De Kimpe,
J. Rossi, S. Debenedetti and C. Davio, Cancer Lett., 2004, 210, 179.
8 M. E. Riveiro, D. Maes, R. Vazquez, M. Vermeulen, S. Mangelinckx,
J. Jacobs, S. Debenedetti, C. Shayo, N. De Kimpe and C. Davio, Bioorg.
Med. Chem., 2009, 17, 6547.
9 J. Yang, G.-Y. Liu, F. Dai, X.-Y. Cao, Y. Kang, L.-M. Hu, J.-J. Tang,
X.-Z. Li, Y. Li, X.-L. Jin and B. Zhou, Bioorg. Med. Chem. Lett., 2011,
21, 6420.
Among 3-(4-methoxyphenyl)coumarins 9a–d, only the com-
pound with three methoxy groups, i.e. 9a, had a noticeable
antiproliferative activity (EC = 0.2 mm). The structures with
a myristicin (9b) or apiol (9c) moieties altered cell division
at higher concentrations of 4 or 1 mm, respectively, whereas
dillapiol derivative 9d was found to be inactive. None of the
compounds tested caused changes in embryo motility typical
of microtubule destabilizers. Meanwhile, the antimitotic effect of
compound 9a could be considered as a result of targeting tubulin,
since cleavage arrest at a concentration of 4 mm was accompanied
by formation of tuberculate eggs [Figure 2(c)] characteristic of
10 P. Singh, U. Faridi, S. Srivastava, J. K. Kumar, M. P. Darokar, S. Luqman,
K. Shanker, C. S. Chanotiya,A. Gupta, M. M. Gupta andA. S. Negi, Chem.
Pharm. Bull., 2010, 58, 242.
11 J. T. Pierson, A. Dumetre, S. Hutter, F. Delmas, M. Laget, J. P. Finet,
N. Azas and S. Combes, Eur. J. Med. Chem., 2010, 45, 864.
12 C. Rappl, P. Barbier, V. Bourgarel-Rey, C. Gre’goire, R. Gilli, M. Carre,
S. Combes, J.-P. Finet and V. Peyrot, Biochemistry, 2006, 45, 9210.
13 C. Bailly, C. Bal, P. Barbier, S. Combes, J. P. Finet, M. P. Hildebrand,
V. Peyrot and N. Wattez, J. Med. Chem., 2003, 46, 5437.
14 S. Combes, P. Barbier, S. Douillard, A. McLeer-Florin, V. B. Bourgarel-
Rey, J. T. Pierson, A. Y. Fedorov, J. P. Finet, J. Boutonnat and V. Peyrot,
J. Med. Chem., 2011, 54, 3153.
15 H. Madari, D. Panda, L. Wilson and R. S. Jacobs, Cancer Res., 2003,
m
icrotubule destabilizers.20 Thus, both dicoumarol and trimethoxy-
63, 1214.
3-(4-methoxyphenyl)coumarin 9a exhibited antimitotic activity
affecting tubulin/microtubules. However, unlike dicoumarol,
compound 9a most probably displayed its antiproliferative pro-
perties due to microtubule destabilization.
The most active coumarin with an elemicin moiety, 9a, was
further tested in NCI60 cytotoxicity screen against 60 human
cancer cell lines at the National Cancer Institute (NCI, USA).
It was found that 9a caused the inhibition of cancer cell growth
with the mean GI50 = 3.981 mm. The screening results are
presented in Online Supplementary Materials.
16 N.-H. Nam, Curr. Med. Chem., 2003, 10, 1697.
17 F. Dallacker, Monatsh. Chem., 1969, 100, 742.
18 B. A. McKittrick and R. Stevenson, J. Chem. Soc., Perkin Trans. 1, 1984,
709.
19 L. M. Kabeya, A. A. de Marchi, A. Kanashiro, N. P. Lopes, C. H. T. P.
da Silva, M. T. Pupo and Y. M. Lucisano-Valim, Bioorg. Med. Chem.,
2007, 15, 1516.
20 M. N. Semenova, A. S. Kiselyov and V. V. Semenov, BioTechniques,
2006, 40, 765.
21 L. D. Konyushkin, T. I. Godovikova, S. K. Vorontsova, D. V. Tsyganov,
I. B. Karmanova, M. M. Raihstat, S. I. Firgang, M. A. Pokrovskii, A. G.
Pokrovskii, M. N. Semenova and V. V. Semenov, Russ. Chem. Bull., Int.
Ed., 2010, 59, 2268 (Izv. Akad. Nauk, Ser. Khim., 2010, 2212).
22 A. B. Sheremetev, D. E. Dmitriev, N. K. Lagutina, M. M. Raihstat, A. S.
Kiselyov, M. N. Semenova, N. N. Ikizalp and V. V. Semenov, Mendeleev
Commun., 2010, 20, 132.
(a)
(b)
(c)
23 V. V. Semenov, A. S. Kiselyov, I.Y. Titov, I. K. Sagamanova, N. N. Ikizalp,
N. B. Chernysheva, D. V. Tsyganov, L. D. Konyushkin, S. I. Firgang, R. V.
Semenov, I. B. Karmanova, M. M. Raihstat and M. N. Semenova, J. Nat.
Prod., 2010, 73, 1796.
24 J. Gong, K. Huang, F. Wang, L.Yang,Y. Feng, H. Li, X. Li, S. Zeng, X. Wu,
J. Stockigt, Y. Zhao and J. Qu, Bioorg. Med. Chem., 2009, 17, 3414.
25 O. Garcia, E. Nicolas and F. Albericio, Tetrahedron Lett., 2003, 44, 4961.
Figure 2 Effects of dicoumarol and compound 9a on the sea urchin embryo
development. (a) Intact early blastula. (b),(c) Arrested eggs. Fertilized eggs
were exposed continuously to (b) 40 mm of dicoumarol or (c) 4 mm of 9a.
Time after fertilization, 6 h. The average embryo diameter is 115 mm. In (b),
note a light rounded spot in the egg center marked by an arrow.
Received: 14th February 2013; Com. 13/4067
– 149 –