(c = 1.1, CHCl3); dH(600 MHz; CDCl3) 7.46-7.02 (m, 60H, ar),
Chemie – KIT, Karlsruhe) for access to the equipment required
for handling liquid ammonia.
3
3
5.58 (d, J1¢’’,2¢’’ = 3.3 Hz, 1H, H-1¢’’), 5.55 (d, J2¢,3¢ = 3.4 Hz,
3
3J1¢,2¢ = 1.1 Hz, 1H, H-2¢), 5.51 (dd, J1¢’,2¢’ = 3.4 Hz, 1H, H-1¢’),
5.30 (s, 1H, benzylidene), 5.13 (d, 3J1¢,2¢ = 1.1 Hz, 1H, H-1¢), 5.02
Notes and references
3
(d, J1,2 = 1.7 Hz, 1H, H-1), 4.96-4.90 (m, 3H, CH2Ph), 4.85 (d,
2J = 10.4 Hz, 1H, CH2Ph), 4.84 (d,2J = 10.6 Hz, 1H CH2Ph),
1 R. Dwek, Chem. Rev., 1996, 96, 683–720; A. Varki, Essentials of
Glycobiology, 2nd edn, Cold Spring Harbor Laboratory Press, Cold
Spring Harbor, N.Y., 2009.
2 A. Helenius and M. Aebi, Science, 2001, 291, 2364–2369; A. Helenius
and M. Aebi, Annu. Rev. Biochem., 2004, 73, 1019–1049.
3 A. Petrescu, T. Butters, G. Reinkensmeier, S. Petrescu, F. Platt, R.
Dwek and M. Wormald, EMBO J., 1997, 16, 4302–4310; M. Aebi, R.
Bernasconi, S. Clerc and M. Molinari, Trends Biochem. Sci., 2010, 35,
74–82; P. Deprez, M. Gautschi and A. Helenius, Mol. Cell, 2005, 19,
183–195.
4 T. Schallus, C. Jaeckh, K. Feher, A. S. Palma, Y. Liu, J. C. Simpson, M.
Mackeen, G. Stier, T. J. Gibson, T. Feizi, T. Pieler and C. Muhle-Goll,
Mol. Biol. Cell, 2008, 19, 3404–3414.
5 I. Matsuo, T. Kashiwagi, K. Totani and Y. Ito, Tetrahedron Lett., 2005,
46, 4197–4200.
6 S. Ennis, I. Cumpstey, A. Fairbanks, T. Butters, M. Mackeen and M.
Wormald, Tetrahedron, 2002, 58, 9403–9411.
7 P. Garegg, Adv. Carbohydr. Chem. Biochem., 2004, 59, 69–134; X. Zhu
and R. R. Schmidt, Angew. Chem., 2009, 121, 1932–1967, (Angew.
Chem., Int. Ed., 2009, 48, 1900–1934); L. K. Mydock and A. V.
Demchenko, Org. Biomol. Chem., 2010, 8, 497.
2
2
4.79 (d, J = 12.0 Hz, 1H, CH2Ph), 4.79 (d, J = 11.2 Hz, 1H,
2
CH2Ph), 4.74-4.70 (m, 3H, CH2Ph), 4.67 (d, J = 12.5 Hz, 1H,
CH2Ph), 4.62 (m, 2H, CH2Ph), 4.55 (d, 2J = 11.6 Hz, 1H, CH2Ph),
2
2
4.55 (d, J = 10.6 Hz, 1H, CH2Ph), 4.54 (d, J = 12.0 Hz, 1H,
2
CH2Ph), 4.53 (d, J = 9.3 Hz, 1H, CH2Ph), 4.51-4.45 (m, 2H,
2
CH2Ph, H-3¢), 4.45-4.35 (m, 3H, CH2Ph, H-5¢’’), 4.30 (d, J =
2
12.2 Hz, 1H, CH2Ph), 4.25 (d, J = 11.6 Hz, 1H, CH2Ph), 4.24
2
3
3
(d, J = 11.2 Hz, 1H, CH2Ph), 4.19 (t, J2¢’,3¢’ ª J3¢’,4¢’ = 9.3 Hz,
1H, H-3¢’), 4.15 (t, 3J3¢,4¢ ª J4¢,5¢ = 9.9 Hz, 1H, H-4¢), 4.12 (m, 2H,
3
H-6a,b), 4.10 (d, 3J1,2 = 1.9 Hz, 1H, H-2), 4.03 (m, 1H, H-3), 4.02
(m, 1H, H-3¢’’), 4.00 (m, 1H, H-5¢), 3.93-3.89 (m, 2H, H-4, H-5¢’),
3
3
3.87 (dd, J4¢’,5¢’ = 10.1 Hz, J3¢’,4¢’ = 9.3 Hz, 1H, H-4¢’), 3.78 (m,
1H, H-5), 3.76 (m, 2H, H-6a,b’), 3.66 (t, 3J3¢’’,4¢’’ ª J4¢’’,5¢’’ = 9.4 Hz,
3
1H, H-4¢’’), 3.60 (dd, 2J = 10.9 Hz, 3J5¢’,6a’’ = 2.1 Hz, 1H, H-6a’’),
3.56 (m, 1H, H-6b’’), 3.53 (dd, 3J2¢’’,3¢’’ = 9.8 Hz, 3J1¢’’,2¢’’ = 3.7 Hz,
1H, H-2¢’’), 3.47 (dd,3J2¢’,3¢’ = 9.6 Hz, 3J1¢’,2¢’ = 3.5 Hz, 1H, H-2¢’),
8 K. Takeo, S. Kitamura and Y. Murata, Carbohydr. Res., 1992, 224,
111–122.
9 R. R. Schmidt and J. Michel, Angew. Chem., 1980, 92, 763–764, (Angew.
Chem., Int. Ed. Engl., 1980, 19, 731–732).
2
3
3.25 (dd, J = 11.0 Hz, J5¢’’,6a’’’ = 1.8 Hz, 1H, H-6a’’’), 3.23 (dd,
2J = 10.9 Hz, 3J5¢’’,6a’’’ = 2.5 Hz, 1H, H-6b’’’), 2.21 (s, 3H, CH3CO);
dC(151 MHz; CDCl3) 169.6, 138.8 (2C), 138,7, 138.2, 138.1, 138.1,
138.0, 137.9, 137.9, 137.8, 136.9 (2C), 129.1, 128.4, 128.3, 128.3,
128.3, 128.2, 128.1, 128.0, 128.0, 127.9, 127.9, 127.8, 127.7, 127.6,
127.6, 127.5, 127.5, 127.5, 127.4, 127.4, 127.3, 127.2, 127.2, 126.8,
126.3, 126.2, 102.2 (Cbenzylidene), 100.1 (C1¢), 97.8 (C1), 97.4 (C1¢’’),
96.3 (C1¢’), 82.2, 79.7, 79.4, 79.2, 78.0, 77.9, 76.7, 75.4, 75.2,
75.1, 74.8, 74.7, 74.4, 73.3, 73.3, 73.2, 72.6, 72.1, 71.9, 70.2, 70.2,
70.0, 69.6, 69.0, 68.9, 68.5, 68.0, 63.7, 20.8 ppm; non-decoupled
10 S. Mehta and B. M. Pinto, J. Org. Chem., 1993, 58, 3269–3276.
11 R. Eby and C. Schuerch, Carbohydr. Res., 1974, 34, 79–90; G. Wulff
and G. Rohle, Angew. Chem., 1974, 86, 173–187, (Angew. Chem., Int.
Ed. Engl., 1974, 13, 157–170).
12 S. Koto, N. Morishima, C. Kusuhara, S. Sekido, T. Yoshida and S. Zen,
Bull. Chem. Soc. Jpn., 1982, 55, 2995–2999; S. Sato, M. Mori, Y. Ito
and T. Ogawa, Carbohydr. Res., 1986, 155, C6–C10.
13 R. U. Lemieux, K. James and T. L. Nagabhus, Can. J. Chem., 1973,
51, 42–47; R. U. Lemieux, K. B. Hendriks, R. V. Stick and K. James,
J. Am. Chem. Soc., 1975, 97, 4056–4062.
14 W. M. Pearlman, Tetrahedron Lett., 1967, 8, 1663–1664.
15 K. Leontein, M. Nilsson and T. Norberg, Carbohydr. Res., 1985, 144,
231–240.
1H,13C HMQC (151 MHz, CDCl3): JC,Hbenzylidene = 163 Hz, JC1,H-1
=
172 Hz, JC1¢,H-1¢ = 175 Hz, JC1¢’,H-1¢’ = 173 Hz, JC1¢’’-H-1¢’’
=
175 Hz; MALDI-MS (pos. mode, DHB): [M+Na]+ calcd.: 1809.8,
found: 1809.8; [M+K]+ calcd.: 1825.7, found: 1825.8; C110H114O22
(1788.1)).
16 G. Zemple´n and E. Pacsu, Ber. Dtsch. Chem. Ges. B, 1929, 62, 1613–
1614.
17 H. Lo¨nn, Carbohydr. Res., 1985, 139, 115–121; H. Lo¨nn, Carbohydr.
Res., 1985, 139, 105–113.
18 Z. Wang, X. Zhang, M. Visser, D. Live, A. Zatorski, U. Iserloh, K. Lloyd
and S. Danishefsky, Angew. Chem., 2001, 113, 1778–1782, (Angew.
Chem., Int. Ed., 2001, 40, 1728–1732); U. Iserloh, V. Dudkin, Z. Wang
and S. Danishefsky, Tetrahedron Lett., 2002, 43, 7027–7030.
19 Structural data deposited: http://dx.doi.org/10.2210/pdb2k46/pdb.
20 F. Delaglio, S. Grzesiek, G. W. Vuister, G. Zhu, J. Pfeifer and A. Bax,
J. Biomol. NMR, 1995, 6, 277–293.
Acknowledgements
This work was supported by the KIT “Concept for the Future”
(RG49-1); funding was provided by the federal “Excellence Initia-
tive”. The authors thank Dr Vladimir Rybin (EMBL, Heidelberg)
for the determination of the ITC data; and Dipl.-Chem. Dominik
Nied and Professor Frank Breher (Institut fu¨r Anorganische
21 B. A. Johnson and R. A. Blevins, J. Biomol. NMR, 1994, 4, 603–614;
B. A. Johnson, Methods Mol. Biol., 2004, 278, 313–352.
This journal is
The Royal Society of Chemistry 2010
Org. Biomol. Chem., 2010, 8, 3294–3299 | 3299
©