1476
E. Fernández, J. Pietruszka
LETTER
AG, the Chemetall GmbH, and the Wacker AG were greatly appre-
ciated. We thank Colleen Kellenberger and Vera Ophoven for sup-
porting experiments.
(6) (a) Tamaru, Y. Eur. J. Org. Chem. 2005, 2647.
(b) Masuyama, Y.; Kinugawa, N.; Kurusu, Y. J. Org. Chem.
1987, 52, 3702. (c) Yamamoto, Y.; Asao, N. Chem. Rev.
1993, 93, 2207. (d) Zanoni, G.; Pontiroli, A.; Marchetti, A.;
Vidari, G. Eur. J. Org. Chem. 2007, 3599.
References and Notes
(7) (a) Masuyama, Y.; Takahara, J. P.; Kurusu, Y. J. Am. Chem.
Soc. 1988, 110, 4473. (b) Masuyama, Y.; Hayashi, R.;
Otake, K.; Kurusu, Y. J. Chem. Soc., Chem. Commun. 1988,
44. (c) Okano, T.; Kiji, J.; Doi, T. Chem. Lett. 1998, 5.
(d) Masuyama, Y.; Ito, A.; Kurusu, Y. Chem. Commun.
1998, 315. (e) Masuyama, Y.; Takahara, J. P.; Kurusu, Y.
Tetrahedron Lett. 1989, 30, 3437. (f) Takahara, J. P.;
Masuyama, Y.; Kurusu, Y. J. Am. Chem. Soc. 1992, 114,
2577.
(1) (a) Hoppe, D. Stereoselective Synthesis, In Science of
Synthesis (Houben-Weyl), 3rd ed., Vol. E21; Helmchen, G.;
Hoffmann, R. W.; Mulzer, J.; Schaumann, E., Eds.; Thieme:
Stuttgart, 1996, 1357–1409. (b) Roush, W. R. Stereo-
selective Synthesis, In Science of Synthesis (Houben-Weyl),
3rd ed., Vol. E21; Helmchen, G.; Hoffmann, R. W.; Mulzer,
J.; Schaumann, E., Eds.; Thieme: Stuttgart, 1996, 1410–
1486. (c) Denmark, S. E.; Almstead, N. G. In Modern
Carbonyl Chemistry; Otera, J., Ed.; Wiley-VCH: Weinheim,
2000, 299–401. (d) Chemler, S. R.; Roush, W. R. In Modern
Carbonyl Chemistry; Otera, J., Ed.; Wiley-VCH: Weinheim,
2000, 403–490. (e) Yamamoto, Y.; Asao, N. Chem. Rev.
1993, 93, 2207.
(8) General Procedure for the Palladium-Catalyzed
Carbonyl Allylation of Aldehydes with SnCl2 – Synthesis
of 7
To a solution of 1b (1.0 mmol) in DMF (3 mL) was added
SnCl2 (3.0 mmol), PdCl2 (PhCN)2 (5 mol%), H2O (25
mmol), and the appropriate aldehyde (1.0 mmol). The
solution was stirred at r.t. until the reaction was completed
(monitored by TLC, 2 h). The reaction mixture was diluted
with Et2O (120 mL) and washed successively with aq 10%
HCl soln (10 mL), sat. NaHCO3 (10 mL), H2O (10 mL), and
brine (10 mL). The extracts were dried over anhyd MgSO4,
the solvent was removed under reduced pressure and the
crude product subjected to flash column chromatography on
SiO2 (PE–EtOAc, 90:10) and MPLC (PE–EtOAc, 98:2)
affording a-substituted allylboronic esters 7, 8, and 9 as
colorless foams.
(2) Hoffmann, R. W.; Weidmann, U. J. Organomet. Chem.
1980, 195, 137.
(3) Selected recent examples: (a) Pietruszka, J.; Schöne, N.;
Frey, W.; Grundl, L. Chem. Eur. J. 2008, 14, 5178.
(b) Pietruszka, J.; Schöne, N. Synthesis 2006, 24.
(c) Pietruszka, J.; Schöne, N. Eur. J. Org. Chem. 2004,
5011. (d) Pietruszka, J.; Schöne, N. Angew. Chem. Int. Ed.
2003, 42, 5638. (e) Berrée, F.; Gernigon, N.; Hercouret, A.;
Lin, C. H.; Carboni, B. Eur. J. Org. Chem. 2009, 329.
(f) Peng, F.; Hall, D. G. Tetrahedron Lett. 2007, 48, 3305.
(g) Ito, H.; Kawakami, C.; Sawamura, M. J. Am. Chem. Soc.
2005, 127, 16034. (h) Beckmann, E.; Desai, V.; Hoppe, D.
Synlett 2004, 2275. (i) Pelz, N. F.; Woodward, A. R.; Burks,
H. E.; Sieber, J. D.; Morken, J. P. J. Am. Chem. Soc. 2004,
126, 16328. (j) Gao, X.; Hall, D. G. J. Am. Chem. Soc. 2003,
125, 9308. (k) Flamme, E. M.; Roush, W. R. J. Am. Chem.
Soc. 2002, 124, 13644. (l) Flamme, E. M.; Roush, W. R.
Beilstein J. Org. Chem. 2005, 1, 7. (m) Matteson, S. D.
Tetrahedron 1998, 54, 10555. (n) Brown, H. C.; Narla, G.
J. Org. Chem. 1995, 60, 4686. (o) Stürmer, R. Angew.
Chem., Int. Ed. Engl. 1990, 29, 59. (p) Hoffmann, R. W.
Pure Appl. Chem. 1988, 60, 123. (q) Hoffmann, R. W.;
Dresely, S. Angew. Chem., Int. Ed. Engl. 1986, 25, 189.
(4) Syntheses of 1a: (a) Luithle, J. E. A.; Pietruszka, J. J. Org.
Chem. 2000, 65, 9194. (b) Luithle, J. E. A.; Pietruszka, J.
J. Org. Chem. 1999, 64, 8287. (c) Luithle, J. E. A.;
Pietruszka, J.; Witt, A. Chem. Commun. 1998, 2651. (d)
For an improved synthesis of the auxiliary, see: Bischop, M.;
Cmrecki, V.; Ophoven, V.; Pietruszka, J. Synthesis 2008,
2488.
Selected Data for 7b
Prepared according to the general procedure: 79% yield of
7b after flash column chromatography. [a]D20 –93.2 (c 1.02,
CHCl3). 1H NMR (600 MHz, CDCl3): d = 1.85 (dd, 3J2,1
=
6.0 Hz, 3J2,3 = 9.7 Hz, 1 H, 2-H), 2.02 (d, 3JOH,1 = 2.3 Hz, 1
H, OH), 2.97 (s, 6 H, OCH3), 4.57 (dd, 3J1,OH = 2.3 Hz,
3J1,2 = 6.0 Hz, 1 H, 1-H), 4.73 (ddd, 4J4-E,2 = 0.7 Hz,
2J4-E,4-Z = 1.9 Hz, 3J4-E,3 = 17.1 Hz, 1 H, 4-HE), 4.89 (dd, 2J4-
Z,4-E = 1.9 Hz, 3J4-Z,3 = 10.2 Hz, 1 H, 4-HZ), 5.29 (s, 2 H, 4¢-
H, 5¢-H), 5.53 (ddd, 3J3,2 = 9.9 Hz, 3J3,4-Z = 9.9 Hz, 3J3,4-E
=
17.1 Hz, 1 H, 3-H), 7.01–7.40 (m, 25 H, arom. CH). 13
C
NMR (151 MHz, CDCl3): d = 40.10 (C-2), 51.98 (OCH3),
72.65 (C-1), 78.22 (C-4¢, C-5¢), 83.60 (CPh2OMe), 117.78
(C-4), 126.58, 127.03, 127.62, 127.67, 127.79, 127.86,
128.05, 128.84, 129.89 (arom. CH), 134.25 (C-3), 141.20,
141.31, 143.18 (arom. Cipso). Anal. Calcd (%) for C40H39BO5
(610.29): C, 78.69; H, 6.44. Found: C, 78.26; H, 6.59.
(9) Furlani, D.; Marton, D.; Tagliavini, G.; Zordan, M. J.
J. Organomet. Chem. 1988, 341, 345.
(10) Barrett, A. G. M.; Malecha, J. W. J. Chem. Soc., Perkin
Trans. 1 1994, 1901.
(5) Applications of 2a in natural product syntheses:
(a) Pietruszka, J.; Rieche, A. C. M.; Schöne, N. Synlett 2008,
2525. (b) Pietruszka, J.; Rieche, A. C. M. Adv. Synth. Catal.
2008, 350, 1407.
(11) Freire, F.; Seco, J. M.; Quiñoa, E.; Riguera, R. J. Org. Chem.
2005, 70, 3778; attempts to separate the enantiomers by
chromatographic methods failed; however, since starting
from diastereomerically pure reagents with no racemization
expected during the addition, the Mosher method lends
additional support to the assignment.
Synlett 2009, No. 9, 1474–1476 © Thieme Stuttgart · New York