894
S. Atilgan et al. / Tetrahedron Letters 51 (2010) 892–894
culate binding constants and stoichiometry and digital photo-
graphs) associated with this Letter can be found, in the online
References and notes
1. (a) Fitzgerald, W. F.; Lamborg, C. H.; Hammerschmidt, C. R. Chem. Rev. 2007,
107, 641; (b) Harris, H. H.; Pickering, I. J.; George, G. N. Science 2003, 301, 1203;
(c). Chem. Rev. 2008, 108, 3443; (d) Renzoni, A.; Zino, F.; Franchi, E. Environ. Res.
Sect., A 1998, 77, 68.
2. Mason, R. P.; Fitzgerald, W. F. Nature 1990, 347, 457.
Figure 3. The fluorescence intensity response of DS-BODIPY (1.5 lM) with 20 lM
of a competing metal followed by addition of 10
wavelength was 640 nm with a slit width of 2.5 nm.
3. (a) Boening, D. W. Chemosphere 2000, 40, 1335; (b) Trudel, M.; Rasmussen, J. B.
Environ. Sci. Technol. 1997, 31, 1716;(c) Clarkson, T.W. J.TraceElem.Exp.Med. 1998,
11, 303; (d) Frodello, J. P.; Romeo, M.; Viale, D. Environ. Pollut. 2000, 108, 447.
4. Chapman, L. A.; Chan, M. H. Toxicology 1999, 132, 167.
l
M Hg+2 in THF. Excitation
5. Tchounwou, P. B.; Avensu, W. K.; Ninashvili, N.; Sutton, D. Environ. Toxicol.
2003, 18, 149.
6. Takeuchi, T.; Morikawa, N.; Matsumoto, H.; Shiraishi, Y. Acta Neuropathol. 1962,
2, 40.
7. Harada, M. Crit. Rev. Toxicol. 1995, 25, 1.
8. Bloom, N.; Fitzgerald, W. F. Anal. Chim. Acta 1988, 208, 151.
9. Huang, C. W.; Jiang, S. J. J. Anal. Atom. Spectrom. 1993, 8, 681.
10. (a) Czarnik, A. W. Fluorescent Chemosensors for Ion And Molecule Recognition,
ACS Symposium Series 538; American Chemical Society: Washington, DC,
1992; p 235.; (b) Czarnik, A. W. Acc. Chem. Soc. 1994, 27, 302; (c) Valeur, B.;
Leray, I. Coord. Chem. Rev. 2000, 205, 3; (d) de Silva, A. P.; Gunaratne, H. Q. N.;
Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E.
Chem. Rev. 1997, 97, 1515; (e) Callan, J. F.; de Silva, A. P.; Magri, D. C.
Tetrahedron 2005, 61, 8551.
11. (a) Bhalla, V.; Tejpal, R.; Kumar, M.; Puri, R. K.; Mahajan, R. K. Tetrahedron Lett.
2009, 50, 2649; (b) Lee, D.-N.; Kim, G.-J.; Kim, H.-J. Tetrahedron Lett. 2009, 50,
4766; (c) Kim, S. H.; Song, K. C.; Ahn, S.; Kang, Y. S.; Chang, S.-K. Tetrahedron
Lett. 2006, 47, 497; (d) Choi, M. G.; Kim, Y. H.; Namgoong, J. E.; Chang, S.-K.
Chem. Commun. 2009, 3560.
12. (a) Nolan, E. M.; Lippard, S. J. J. Am. Chem. Soc. 2003, 125, 14270; (b) Yang, X.-F.;
Lia, Y.; Bai, Q. Anal. Chim. Acta 2007, 584, 95; (c) Yoon, S.; Miller, E. W.; He, Q.;
Do, P. K.; Chang, C. J. Angew. Chem., Int. Ed. 2007, 46, 6658; (d) Santra, M.; Ryu,
D.; Chatterjee, S.; Ko, S. K.; Shin, I.; Ahn, K. H. Chem. Commun. 2009, 2115.
13. (a) Yang, Y.-K.; Yook, K.-J.; Tae, J. J. Am. Chem. Soc. 2005, 127, 16760; (b) Zheng,
H.; Qian, Z.-H.; Xu, L.; Yuan, F.-F.; Lan, L.-D.; Xu, J.-G. Org. Lett. 2006, 8, 859; (c)
Lee, M. H.; Lee, S. J.; Jung, J. H.; Lim, H.; Kim, J. S. Tetrahedron 2007, 63, 12087;
(d) Chen, X.; Nam, S.-W.; Jou, M. J.; Kim, Y.; Kim, S.-J.; Park, S.; Yoon, J. Org. Lett.
2008, 10, 5235.
Figure 4. Emission spectra of the chemosensor 3, at increasing concentrations of
Hg2+ (cation concentrations 0, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 4.0, 5.0, 7.5, 10
Excitation wavelength was 630 nm with a slit width of 2.5 nm.
lM) in THF.
14. (a) Rurack, K.; Resch-Genger, U.; Bricks, J. L.; Spieles, M. Chem. Commun. 2000,
2103; (b) Guo, X.; Qian, X.; Jia, L. J. Am. Chem. Soc. 2004, 126, 2272; (c) Wang, J.;
Qian, X. Chem. Commun. 2006, 109.
A titration experiment was also conducted in order to observe
ratiometric analysis and also to calculate the binding constant
(Kd) of the chemosensor 3 with Hg2+. The stoichiometry between
dye 3 and Hg2+ is confirmed by Hill plot analysis, Figure 4 (details
in Supplementary data).29 As expected, the sigmoidal curve (Fig. 3
in Supplementary data) clearly shows a 1:2 stoichiometry between
3:Hg2+ with a dissociation constant of 1.8 Â 10À6 M2.
15. (a) Rurack, K.; Kollmannsberger, M.; Resch-Genger, U.; Daub, J. J. Am. Chem. Soc.
2000, 122, 968; (b) Yuan, M.; Li, Y.; Li, J.; Li, C.; Liu, X.; Lv, J.; Xu, J.; Liu, H.;
Wang, S.; Zhu, D. Org. Lett. 2007, 9, 2313; (c) Wang, J. B.; Qian, X. H. Org. Lett.
2006, 8, 3721; (d) Coskun, A.; Akkaya, E. U. J. Am. Chem. Soc. 2006, 128, 14474.
16. Akkaya, E. U.; Turkyılmaz, S. Tetrahedron Lett. 1997, 38(25), 4513.
17. Yoon, J.; Ohler, N. E.; Vance, D. H.; Aumiller, W. D.; Czarnik, A. W. Tetrahedron
Lett. 1997, 38, 3845.
18. (a) Coskun, A.; Yilmaz, M. D.; Akkaya, E. U. Org. Lett. 2007, 9, 607; (b) Zhu, M.;
Yuan, M. J.; Liu, X. F.; Xu, J. L.; Lv, J.; Huang, C. S.; Liu, H. B.; Li, Y. L.; Wang, S.;
Zhu, D. B. Org. Lett. 2008, 10, 1481.
19. Dost, Z.; Atilgan, S.; Akkaya, E. U. Tetrahedron 2006, 62, 8484.
20. (a) Coskun, A.; Akkaya, E. U. J. Am. Chem. Soc. 2005, 127, 10464; (b) Zeng, L.;
Miller, E. W.; Pralle, A.; Isacoff, E. Y.; Chang, C. J. J. Am. Chem. Soc. 2006, 128, 10;
(c) Guliyev, R.; Coskun, A.; Akkaya, E. U. J. Am. Chem. Soc. 2009, 131, 9007; (d)
Guliyev, R.; Buyukcakir, O.; Sozmen, F.; Bozdemir, O. A. Tetrahedron Lett. 2009,
50, 5139; (e) Gabe, Y.; Yrano, Y.; Kikuchi, H.; Kojima, H.; Nagano, T. J. Am. Chem.
Soc. 2004, 126, 3357.
21. (a) Coskun, A.; Deniz, E.; Akkaya, E. U. Org. Lett. 2005, 7, 5187; (b) Ozlem, S.;
Akkaya, E. U. J. Am. Chem. Soc. 2009, 131, 48.
22. (a) Yilmaz, M. D.; Bozdemir, O. A.; Akkaya, E. U. Org. Lett. 2006, 8, 2871; (b)
Alamiry, M. A. H.; Harriman, A.; Mallon, L. J.; Ulrich, G.; Ziessel, R. Eur. J. Org.
Chem. 2008, 2774.
23. (a) Burghart, A.; Thoresen, L. H.; Chen, J.; Burgess, K.; Bergstrom, F.; Johansson,
L. B.-A. Chem. Commun. 2000, 2203; (b) Goze, C.; Ulrich, G.; Ziessel, R. Org. Lett.
2006, 8, 4445.
In conclusion, we have presented a highly selective and sensi-
tive BODIPY-based near-IR emitting chemosensor for Hg2+ over
other competing cations even at low concentration. This chemo-
sensor can be used as an analytical tool for qualitative monitoring,
and quantitative detection of Hg2+. Moreover a large hypsochromic
shift (approx. 90 nm) is seen with the coordination of Hg2+ in both
the absorption and emission spectrum. Analyses of the chemosen-
sor were carried out in THF to demonstrate our modeling as an
alternative chemosensor for mercury cation in the near-IR region.
It may be that this work will influence the development of new
near-IR emitting BODIPY-based chemosensors and biologically
important water soluble near-IR emitting chemosensors.
24. (a) Hattori, S.; Ohkubo, K.; Urano, Y.; Sunahara, H.; Nagano, T.; Wada, Y.;
Tkachenko, N. V.; Lemmetyinen, H.; Fukuzumi, S. J. Phys. Chem. B 2005, 109,
15368; (b) Ela, S. E.; Yilmaz, M. D.; Icli, B.; Dede, Y.; Icli, S.; Akkaya, E. U. Org.
Lett. 2008, 10, 3299.
25. Cakmak, Y.; Akkaya, E. U. Org. Lett. 2009, 11, 84.
26. Ozdemir, T.; Atilgan, S.; Kutuk, I.; Yildirim, L. T.; Tulek, A.; Bayindir, M.; Akkaya,
E. U. Org. Lett. 2009, 11, 2105.
Acknowledgment
The authors thank Professor Dr. Engin U. Akkaya for fruitful
discussions.
27. Atilgan, S.; Ekmekçi, Z.; Dogan, A. L.; Guc, D.; Akkaya, E. U. Chem. Commun.
2006, 4398.
Supplementary data
28. Atilgan, S.; Ozdemir, T.; Akkaya, E. U. Org. Lett. 2008, 10, 4065.
29. The binding constant determination and Hill plot analysis were determined as
follows, see: Peng, X.; Du, J.; Fan, J.; Wang, J.; Wu, Y.; Zhao, J.; Sun, S.; Xu, T. J.
Am. Chem. Soc. 2007, 129, 1500.
Supplementary data (syntheses, experimental details, 1H, 13C
NMR spectra and additional spectroscopic data, figures used to cal-