as a yellow oil. HRMS (EI, m/z): [M]þ calcd. for C40H16O5Br2F6O2:
934.0432; found, 934.0478. 1H NMR (400 MHz, CDCl3, d): 0.87 (t, 3H,
Technology, Japan. Supporting Information is available online from Wiley
InterScience or from the author.
J ¼ 6.5 Hz,
ꢁCH3),
1.27–1.73
(m,
15H,
ꢁOCHCH3
and
Received: November 3, 2009
Revised: December 13, 2009
Published online: March 15, 2010
ꢁOCH(CH2)6CH3), 1.89 (s, 6H, thienyl-CH3), 4.43 (sext, 1H, J ¼ 6.5 Hz,
ꢁOCH(CH3)C7H15), 5.36 (s, 2H, ꢁCOOCH2ꢁ), 5.40 (s, 2H,
ꢁCOOCH2ꢁ), 6.86 (d, 2H, J ¼ 8.9 Hz, ortho to ꢁOCH(CH3)C7H15),
7.08 (s, 1H, thienyl-H), 7.13 (s, 1H, thienyl-H), 7.45 (d, 1H, J ¼ 8.6 Hz,
phenyl-H), 7.51 (d, 1H, J ¼ 8.6 Hz, phenyl-H), 7.88 (s, 1H, phenyl-H), 7.96
(d, 2H, J ¼ 8.9 Hz, meta toꢁOCH(CH3)C7H15). 13C NMR (400 MHz,
CDCl3, d): 14.1, 14.4 (2 ꢀ sp3 signals, thienyl-CH3), 22.6, 25.4, 29.2, 29.5,
31.7, 36.3, 60.4 (sp3, ꢁOCH2ꢁ), 61.4 (sp3, ꢁOCH2ꢁ), 75.0 (sp3,
ꢁOCH(CH3)C7H15), 115.0, 120.4, 120.9, 121.3 (sp2, phenylene linked to
carbonyl moiety), 124.4, 124.4.,127.3, 128.5, 131.7, 132.9 (sp2, phenylene
linked to carbonyl moiety), 134.1, 135.1, 135.6, 135.7, 136.7, 143.1,
143.7 162.3 (sp2, phenylene carbon linked to ether type oxygen), 164.2 (sp2,
ꢁOCOꢁ), 165.7 (sp2, ꢁOCOꢁ).
[1] a) Handbook of Conducting Polymers (Ed: T. A. Skotheim), Marcel Dekker,
New York 1986. b) Handbook of Organic Conductive Molecules and Polymers
(Ed: H. S. Nalwa), Wiley, New York 1997. c) Handbook of Conducting
Polymers, Conjugated Polymers, 3rd ed. (Eds: T. A. Skotheim, J. R. Reynolds),
CRC Press, New York 2007.
[2] Electrical and Optical Polymer Systems: Fundamentals, Methods, and Appli-
cations (Eds: D. L. Wise, G. E. Wnek, D. J. Trantolo, T. M. Cooper,
J. D. Gresser), Marcel Dekker, New York 1998.
(R)-P1: A solution of (R)-5 (158 mg, 0.17 mmol), 4,40-biphenyldiboronic
acid bis(neopentylglycol)cyclic ether (64.3 mg, 0.17 mmol), and Pd(PPh3)4
(2.0 mg, 1.7 mmol) in 10 mL of THF and 5 mL of 40% Na2CO3 aq. was
stirred under Ar at 55 8C overnight. The reaction mixture was poured into a
large amount of methanol (250 mL) and stirred for 15 min. The resulting
precipitate was collected by filtration and dissolved in the minimum
amount of THF (3 mL) and stirred in H2O (300 mL) for 1 h. After filtration,
the product was dried under vacuum to give 182 mg (99%) of a colorless
powder. 1H NMR (400 MHz, CDCl3, d): 0.86 (br, 3H, ꢁCH3), 1.25 (br, 15H,
ꢁOCHCH3 and ꢁOCH(CH2)6CH3), 1.79 (br, 3H, thienyl-CH3), 1.84 (br,
3H, thienyl-CH3), 4.39 (br, 1H, ꢁOCH(CH3)C7H15), 5.30 (br, 2H,
ꢁCOOCH2ꢁ), 5.34 (br, 2H, ꢁCOOCH2ꢁ), 6.89 (br, 2H, ortho to
ꢁOCH(CH3)C7H15), 7.05 (br, 1H, thienyl-H in dithienylethene), 7.14
(br, 1H, thienyl-H in dithienylethene), 7.50–7.71 (br, 11H, phenyl-H in main
[3] a) J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay,
R. H. Friend, P. L. Burn, A. B. Holmes, Nature. 1990, 347, 539.
b) P. L. Burns, A. B. Holmes, A. Kraft, D. D. C. Bradley, A. R. Brown,
R. H. Friend, R. W. Gymer, Nature 1992, 356, 47. c) G. Grem, G. Lditzky,
B. Ulrich, G. Leizing, Adv. Mater. 1992, 4, 36. d) N. C. Greenham,
S. C. Moratti, D. D. C. Bradley, R. H. Friend, A. B. Holmes, Nature
1993, 365, 628.
[4] a) R. N. Marks, J. J. M. Halls, D. D. C. Bradley, R. H. Friend, A. B. Holmes,
J. Phys.: Condens. Matter 1994, 6, 1379. b) J. J. M. Halls, C. A. Walsh,
N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, Nature 1995,
376, 498.
[5] a) G. Yu, A. J. Heeger, Appl. Phys. 1995, 78, 4510. b) N. Tessler,
G. J. Denton, R. H. Friend, Nature 1996, 382, 965.
[6] a) M. Sisido, S. Egusa, A. Okamoto, Y. Imanishi, J. Am. Chem. Soc. 1983,
105, 3351. b) M. Sisido, Macromolecules 1989, 22, 3280. c) M. Sisido,
H. Narisawa, R. Kishi, J. Watanabe, Macromolecules 1993, 26, 1424.
d) M. M. Green, C. Khatri, N. C. Peterson, J. Am. Chem. Soc. 1993,
115, 4941. e) M. M. Green, N. C. Peterson, T. Sato, A. Teramoto,
R. Cook, S. Lifson, Science 1995, 268, 1860. f) J. C. Nelson, J. G. Saven,
J. S. Moore, P. G. Wolynes, Science 1997, 277, 1793. g) K. Akagi, K, G. Piao,
S. Kaneko, K. Sakamaki, H. Shirakawa, M. Kyotani, Science 1998, 282, 1683.
h) M. M. Green, C. Andreola, B. Munoz, M. Reidy, K. Zero, J. Am. Chem.
Soc. 1988, 110, 4063. i) D. S. Schlitzer, B. M. Novak, J. Am. Chem. Soc. 1998,
120, 2196. j) J. J. L. M. Cornelissen, M. Fischer, N. A. J. M. Sommerdijk,
R. J. M. Nolte, Science 1998, 280, 1427. k) E. Yashima, K. Maeda,
Y. Okamoto, Nature 1999, 399, 449. l) V. Berl, I. Huc, R. G. Khoury,
M. J. Krische, J.-M. Lehn, Nature 2000, 407, 720. m) J. J. L. M. Cornelissen,
J. J. J. M. Donners, R. D. Gelder, W. S. Graswinckel, G. A. Metselaar,
A. E. Rowan, N. A. J. M. Sommerdijk, R. J. M. Nolte, Science 2001, 293, 676.
[7] a) C. Y. Li, S. Jin, X. Weng, J. J. Ge, D. Zhang, F. Bai, F. W. Harris,
S. Z. D. Cheng, Macromolecules 2002, 35, 5475. b) K. Tang, M. M. Green,
K. S. C. Cheon, J. V. Selinger, B. A. Garetz, J. Am. Chem. Soc. 2003, 125,
7313. c) M. Masuda, P. Jonkheijm, R. P. Sijbesma, E. W. Meijer, J. Am.
Chem. Soc. 2003, 125, 15935. d) B. S. Li, K. K. L. Cheuk, L. Ling, J. Chen,
X. Xiao, C. Bai, B. Z. Tang, Macromolecules 2003, 36, 77. e) K. K. L. Cheuk,
J. W. Y. Lam, J. Chen, L. M. Lai, B. Z. Tang, Macromolecules 2003, 36, 5947.
f) S. Che, Z. Liu, T. Ohsuna, K. Sakamoto, O. Terasaki, T. Tatsumi, Nature
2004, 429, 281. g) C. Li, M. Numata, A.-H. Bae, K. Sakurai, S. Shinkai, J. Am.
Chem. Soc. 2005, 127, 4548. h) J. Wang, W. Wang, P. Sun, Z. Yuan, B. Li,
O. Jin, D. Ding, T. Chen, J. Mater. Chem 2006, 16, 4117. i) T. Miyagawa,
M. Yamamoto, R. Muraki, H. Onouchi, E. Yashima, J. Am. Chem. Soc. 2007,
129, 3676. j) D. Pijper, B. L. Feringa, Angew. Chem. Int. Ed. 2007, 46, 3693.
k) A. Shishido, M. Ishiguro, T. Ikeda, Chem. Lett. 2007, 36, 1146.
[8] a) B. M. W. Langeveld-Voss, R. A. J. Janssen, M. P. T. Christiaans,
S. C. J. Meskers, H. P. J. M. Dekkers, E. W. Meijer, J. Am. Chem. Soc.
1996, 188, 4908. b) B. M. W. Langeveld-Voss, R. A. J. Janssen, E. W. Meijer,
J. Mol. Struct. 2000, 521, 285. c) M. Oda, H.-G. Nothofer, G. Lieser,
U. Scherf, S. C. J. Meskers, D. Neher, Adv. Mater. 2000, 12, 362.
d) Y. Geng, A. Trajkovska, D. Katsis, J. J. Ou, S. W. Culligan,
S. H. Chen, J. Am. Chem. Soc. 2002, 124, 8337. e) H. Goto, K. Akagi,
chain), 7.94 (br, 2H, meta to ꢁOCH(CH3)C7H15 .
)
13C NMR (400 MHz,
CDCl3, d): 14.0, 14.3, 19.5, 22.6, 25.4, 29.2, 29.5, 31.7, 36.2, 60.4 (2 ꢀ sp3
signals, ꢁOCH2ꢁ), 74.0 (sp3, ꢁOCH(CH3)C7H15), 114.9 (sp2, phenylene
in side chain), 121.3 (sp2, phenylene linked to carbonyl moiety), 124.2,
124.7, 127.4, 128.8, 131.6 (sp2, phenylene in side chain), 136.7, 162.3 (sp2,
phenylene carbon linked to ether type oxygen), 165.7 (sp2, ꢁOCOꢁ) (see
Fig. S5 in the Supporting Information).
(R)-P2: A solution of Pd2(DBA)3 (3.5 mg, 3.4 mmol) and (2-furyl)3P
(3.5 mg, 13.5 mmol) in 1 mL of THF was stirred under Ar at 50 8C for
15 min. 5,50-bis-trimethylstannyl-2,20-bithiophene (191 mg, 0.34 mmol)
and (R)-5 (316 mg, 0.34 mmol) were then added to the mixture. After
stirring at 50 8C for 3 days, the reaction mixture was poured into a large
amount of methanol (400 mL) that contained 12 N HCl (3 mL) and
vigorously stirred for 15 min. The resulting precipitate was collected by
filtration and dissolved in a minimum amount of THF (3 mL) and stirred in
methanol (300 mL) for 24 h. After filtration, the product was dried under
1
vacuum to give 318 mg (99%) of an orange powder. H NMR (400 MHz,
CDCl3, d): 0.83 (br, 3H, ꢁCH3), 1.21–1.28 (m, 15 H, ꢁOCHCH3 and
ꢁOCH(CH2)6CH3), 1.79 (br, 3H, thienyl-CH3), 1.83 (br, 3H, thienyl-CH3),
4.39 (br, 1H, ꢁOCH(CH3)C7H15), 5.28 (br, 2H, ꢁCOOCH2ꢁ), 5.32 (br, 2H,
ꢁCOOCH2ꢁ), 6.83 (d, 2H, J ¼ 8.8 Hz, ortho to ꢁOCH(CH3)C7H15), 6.98
(br, 2H, thienyl-H in dithienylethene), 7.13–7.96 ppm (m, 7H, phenyl-H and
thienyl-H in main chain), 7.92 (d, 2H, J ¼ 8.8 Hz, meta
toꢁOCH(CH3)C7H15). 13C NMR (400 MHz, CDCl3, d): 14.1, 19.5, 22.6,
25.4, 29.2, 29.5, 31.7, 36.2, 60.4 (sp3, ꢁOCH2ꢁ), 61.2 (sp3, ꢁOCH2ꢁ),
74.0 (sp3, ꢁOCH(CH3)C7H15), 114.9 (sp2, phenylene in side chain), 121.3
(sp2, phenylene linked to carbonyl moiety), 124.2, 124.7, 127.3, 128.0,
131.6 (sp2, phenylene in side chain), 136.7, 143.0, 143.5, 162.3 (sp2,
phenylene carbon linked to ether type oxygen), 165.7 (sp2, ꢁOCOꢁ), 167.7
(sp2, ꢁOCOꢁ) (see Fig. S6 in the Supporting Information).
Similar chemical properties were obtained for the enantiomeric
compounds (S)-2, (S)-3, (S)-5, (S)-P1, and (S)-P2.
Acknowledgements
This work was supported by a Grant-in-Aid for Science Research (S) (No.
202250007) and that in a Priority Area ‘Super-Hierarchical Structures’ (No.
446) from the Ministry of Education, Culture, Sports, Science and
Adv. Funct. Mater. 2010, 20, 1243–1250
ß 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
1249