Journal of the American Chemical Society
Page 6 of 7
1
2
3
4
5
6
7
8
9
1 Faust, R. Fascinating natural and artificial cyclopropane architectures. Angew. Chem. Int. Ed. 2001, 40, 2251–2253.
2 Wessjohann, L. A.; Brandt, W. Biosynthesis and metabolism of cyclopropane rings in natural compounds. Chem. Rev. 2003, 103, 1625–1647.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
3
Pietruszka, J. Synthesis and properties of oligocyclopropyl-containing natural products and model compounds. Chem. Rev. 2003, 103, 1051–
1070.
4 de Meijere, A.; Kozhushkov, S. I.; Schill, H. Three-membered-ring-based molecular architectures. Chem. Rev. 2006, 106, 4926–4996.
5
Chen, D. Y.-K.; Pouwer, R. H.; Richard, J.-A. Recent advances in the total synthesis of cyclopropane-containing natural products. Chem. Soc.
Rev. 2012, 41, 4631–4642.
6 Taylor, R. D.; MacCoss, M.; Lawson, A. D. G. Rings in drugs. J. Med. Chem. 2014, 57, 5845–5859.
7 Talele, T. T. The “cyclopropyl fragment” is a versatile player that frequently appears in preclinical/clinical drug molecules. J. Med. Chem. 2016,
59, 8712–8756.
8 Ebner, C.; Carreira, E. M. Cyclopropanation strategies in recent total syntheses. Chem. Rev. 2017, 117, 11651–11679.
9 Rubin, M.; Rubina, M.; Gevorgyan, V. Transition metal chemistry of cyclopropenes and cyclopropanes. Chem. Rev. 2007, 107, 3117–3179.
10 Carson, C. A. ; Kerr, M. A. Heterocycles from cyclopropanes: applications in natural product synthesis. Chem. Soc. Rev. 2009, 38, 3051–3060.
11 Tang, P.; Qin, Y. Recent applications of cyclopropane-based strategies to natural product synthesis. Synthesis 2012, 44, 2969–2984.
12
Mack, D. J.; Njardarson, J. T. Recent advances in the metal-catalyzed ring expansions of three- and four-membered rings. ACS Catal. 2013, 3,
272–286.
13 Murakami, M.; Chatani, N. Eds., Cleavage of Carbon–Carbon Single Bonds by Transition Metals (Wiley-VCH, Weinheim, 2015).
14 Kulinkovich, O. G. Ed., Cyclopropanes in Organic Synthesis (Wiley-VCH, Hoboken, 2015).
15 Fumagalli, G.; Stanton, S.; Bower, J. F. Recent methodologies that exploit C–C single-bond cleavage of strained ring systems by transition metal
complexes. Chem. Rev. 2017, 117, 9404–9432.
16 Souillart, L.; Cramer, N. Catalytic C–C bond activations via oxidative addition to transition metals. Chem. Rev. 2015, 115, 9410–9464.
17 de Meijere, A. Bonding properties of cyclopropane and their chemical consequences. Angew. Chem. Int. Ed. Engl. 1979, 18, 809–826.
18 Wiberg, K. B. The concept of strain in organic chemistry. Angew. Chem. Int. Ed. Engl. 1986, 25, 312–322.
19
Khoury, P. R.; Goddard, J. D.; Tam, W. Ring strain energies: substituted rings, norbornanes, norbornenes and norbornadienes. Tetrahedron
2004, 60, 8103–8112.
20 Schneider, T. F.; Kaschel, J.; Werz, D. B. A new golden age for donor–acceptor cyclopropanes. Angew. Chem. Int. Ed. 2014, 53, 5504–5523.
21 Khusnutdinov, R. I.; Dzhemilev, U. M. Transition metal complexes in the chemistry of vinylcyclopropanes. J. Organomet. Chem. 1994, 471, 1–
18.
22
Brandi, A.; Cicchi, Cordero, S. F. M.; Goti, A. Progress in the synthesis and transformations of alkylidenecyclopropanes and
alkylidenecyclobutanes. Chem. Rev. 2014, 114, 7317–7420.
23 Jia, M.; Ma, Shengming. New approaches to the synthesis of metal carbenes. Angew. Chem. Int. Ed. 2016, 55, 9134–9166.
24 Yang, S. F.; Hoffman, N. E. Ethylene biosynthesis and its regulation in higher plants. Annu. Rev. Plant Physiol. 1984, 35, 155–189.
25 Pirrung, M. C. Ethylene biosynthesis from 1-aminocyclopropanecarboxylic acid. Acc. Chem. Res. 1999, 32, 711–718.
26
(a) Solorio-Alvarado, C. R.; Wang, Y.; Echavarren, A. M. Cyclopropanation with gold(I) carbenes by retro-Buchner reaction from
cycloheptatrienes. J. Am. Chem. Soc. 2011, 133, 11952–11955. (b) Wang, Y.; McGonigal, P. R.; Herlé, B.; Besora, M.; Echavarren, A. M. Gold(I)
carbenes by retro-Buchner reaction: generation and fate. J. Am. Chem. Soc. 2014, 136, 801–809. (c) Wang, Y.; Muratore, M. E.; Rong, Z.;
Echavarren, A. M. Formal (4+1) cycloaddition of methylenecyclopropanes with 7-aryl-1,3,5-cycloheptatrienes by triple gold(I) catalysis. Angew.
Chem. Int. Ed. 2014, 53, 14022–14026. (d) Yin, X.; Mato, M.; Echavarren, A. M. Gold(I)-catalyzed synthesis of indenes and cyclopentadienes:
access to ( )-Laurokamurene B and the skeletons of the cycloaurenones and dysiherbols. Angew. Chem. Int. Ed. 2017, 56, 14591–14595. (e) Herlé,
B.; Holstein, P. M.; Echavarren, A. M. Stereoselective cis-vinylcyclopropanation via a gold(I)-catalyzed retro-Buchner reaction under mild
Conditions. ACS Catal. 2017, 7, 3668–3675. (f) Mato, M.; Herlé, B.; Echavarren, A. M. Cyclopropanation by gold- or zinc-catalyzed retro-
Buchner reaction at room temperature. Org. Lett. 2018, 20, 4341–4345.
27
Takaya, H.; Suzuki, T.; Kumagai, Y.; Hosoya, M.; Kawauchi, H.; Noyori, R. Nickel(0)-catalyzed reactions of bicyclo[1.1.0]butanes. Geminal
two-bond cleavage reaction and the stereospecific olefin trapping of the carbenoid intermediate. J. Org. Chem. 1981, 46, 2854–2861.
28 Walczak, M. A. A.; Wipf, P. Rhodium(I)-catalyzed cycloisomerizations of bicyclobutanes. J. Am. Chem. Soc. 2008, 130, 6924–6925.
29
Yoshizaki, S.; Shibata, Y.; Tanaka, K. Fulvene synthesis by rhodium(I)-catalyzed [2+2+1] cycloaddition: synthesis and catalytic activity of
tunable cyclopentadienyl rhodium(III) complexes with pendant amides. Angew. Chem. Int. Ed. 2017, 56, 3590–3593.
30
Kawamura, T.; Kawaguchi, Y.; Sugikubo, K.; Inagaki, F.; Mukai, C. Rhodium(I)-catalyzed cycloisomerization of allene–allenylcyclopropanes.
Eur. J. Org. Chem. 2015, 719–722.
31 Gassman, P. G.; Johnson, T. H. Retrocarbene additions. Dissection of alkyl-substituted cyclopropanes under metathesis conditions. J. Am. Chem.
Soc. 1976, 98, 6057–6058.
32 Gassman, P. G.; Johnson, T. H. Cyclopropane–olefin cross metathesis. J. Am. Chem. Soc. 1976, 98, 6058–6059.
33
For RC of alkoxycyclopropanes in gas phase, see: Fedorov, A.; Bach, L. A.; Birney, D. M.; Chen, P. Potential energy surface for (retro-
)cyclopropanation: metathesis with a cationic gold complex. J. Am. Chem. Soc. 2011, 133, 12162–12171.
34 Shang, R.; Ilies, L.; Nakamura, E. Iron-catalyzed C–H bond activation. Chem. Rev. 2017, 117, 9086–9139.
35 Kuninobu, Y.; Takai, K. Organic reactions catalyzed by rhenium carbonyl complexes. Chem. Rev. 2011, 111, 1938–1953.
36 Jennings, P. W.; Johnson, L. L. Metallacyclobutane complexes of the group eight transition metals: synthesis, characterizations, and chemistry,
ACS Paragon Plus Environment