C O M M U N I C A T I O N S
spectrum contained a νCtN band at 2073 cm-1. The structure of 6
determined by X-ray diffraction (see Supporting Information) consists
of an octahedral geometry with two apical hydrides. The length of the
C-N bond (1.172(5) Å) corresponds to that of a C-N triple bond.
Treatment of 1b with 1.1 equiv of Me2NNH2 formed an
analogous mixture of two products (PCP)IrNdNMe2 (9) and
(PCP)Ir(H)2CtNMe (10). The formation of ammonia again ac-
companied the formation of the isocyanide complex. At the early
stage of this reaction (5 min), the hydrido hydrazido complex 8
that had formed from the first N-H bond addition of Me2NNH2
was observed in 94% yield. Like complex 3b, monohydride 8
underwent a second N-H activation to form the aminonitrene
complex (PCP)IrNdNMe2 (9). The reaction was complete after 9 h,
and a mixture of complex 9 and the isocyanide trans-dihydride
complex 10 was formed in a ca. 2:3 ratio.
The proposed mechanism for the reactions of the phenyliridium
hydride complex 1b with MePhNNH2 and Me2NNH2 is shown in
Scheme 3. Like the aminonitrene complex 4, the nitrene complexes 5
and 9 result from double N-H bond cleavages and elimination of H2.
The formation of the isocyanide complexes likely proceeds by initial
oxidative addition of the methyl C-H bonds, followed by N-N bond
cleavage via ꢀ-NH2 elimination to generate ammonia and the imine.
Addition of the C-H bond of the resulting imine and the subsequent
deinsertion of the isocyanide unit18 would form the final iridium
product. Because the reaction of 1b with Me2NNH2 initially formed
the monohydride 8 in >90% yield, but the nitrene complex 9 derived
from 8 was formed in 40% yield with a 57% yield of isocyanide
complex 10, the first N-H bond activation is likely reversible.
Scheme 4. Preliminary Reactivity of Complex 4
Acknowledgment. We thank the Department of Energy for
support and Johnson-Matthey for iridium.
Supporting Information Available: Experimental procedures,
spectra data for all compounds, and crystallographic data for 2a, 2b,
3a, 4, 6, and 7 (CIF). This material is available free of charge via the
References
(1) (a) Roundhill, D. M. Chem. ReV. 1992, 92, 1. (b) Hartwig, J. F.
Organotransition metal chemistry: from bonding to catalysis; University
of Science Books: Sausalito, CA, 2010.
(2) (a) Casalnuovo, A. L.; Calabrese, J. C.; Milstein, D. J. Am. Chem. Soc.
1988, 110, 6738. (b) Kanzelberger, M.; Zhang, X.; Emge, T. J.; Goldman,
A. S.; Zhao, J.; Incarvito, C.; Hartwig, J. F. J. Am. Chem. Soc. 2003, 125,
13644. (c) Zhao, J.; Goldman, A. S.; Hartwig, J. F. Science 2005, 307,
1080. (d) Sykes, A. C.; White, P.; Brookhart, M. Organometallics 2006,
25, 1664. (e) Morgan, E.; MacLean, D. F.; McDonald, R.; Turculet, L.
J. Am. Chem. Soc. 2009, 131, 14234. (f) Khaskin, E.; Iron, M. A.; Shimon,
L. J. W.; Zhang, J.; Milstein, D. J. Am. Chem. Soc. 2010, 132, 8542.
(3) (a) Nakajima, Y.; Kameo, H.; Suzuki, H. Angew. Chem., Int. Ed. 2006,
45, 950. (b) Fafard, C. M.; Adhikari, D.; Foxman, B. M.; Mindiola, D. J.;
Ozerov, O. V. J. Am. Chem. Soc. 2007, 129, 10318.
(4) (a) Cummins, C. C.; Baxter, S. M.; Wolczanski, P. T. J. Am. Chem. Soc.
1988, 110, 8731. (b) Walsh, P. J.; Hollander, F. J.; Bergman, R. G. J. Am.
Chem. Soc. 1988, 110, 8729. (c) Schrock, R. R.; Murdzek, J. S.; Bazan,
G. C.; Robbins, J.; DiMare, M.; O’Regan, M. J. Am. Chem. Soc. 1990,
112, 3875. (d) Michelman, R. I.; Bergman, R. G.; Andersen, R. A.
Organometallics 1993, 12, 2741. (e) Hazari, N.; Mountford, P. Acc. Chem.
Res. 2005, 38, 839.
Scheme 3. Proposed Mechanism of the Reactions of 1b with
MePhNNH2 and Me2NNH2
(5) (a) Glueck, D. S.; Wu, J.; Hollander, F. J.; Bergman, R. G. J. Am. Chem.
Soc. 1991, 113, 2041. (b) Mindiola, D. J.; Hillhouse, G. L. J. Am. Chem.
Soc. 2001, 123, 4623.
(6) (a) Riehl, J. F.; Jean, Y.; Eisenstein, O.; Pelissier, M. Organometallics 1992,
11, 729. (b) Yuan, J.; Hughes, R. P.; Rheingold, A. L. Organometallics
2009, 28, 4646.
(7) H2 apparently interacts weakly with the iridium aminonitrene complex,
resulting in the broad signal in the 1H NMR spectrum. This signal was
absent after removal of the volatile materials but was regenerated by addition
of H2 to the solution of the aminonitrene complex 4.
(8) (a) Arndtsen, B. A.; Schoch, T. K.; McElwee-White, L. J. Am. Chem. Soc.
1992, 114, 7041. (b) Danopoulos, A. A.; Wilkinson, G.; Williams, D. J.
J. Chem. Soc., Dalton Trans. 1994, 907.
(9) (a) Chatt, J.; Crichton, B. A. L.; Dilworth, J. R.; Dahlstrom, P.; Gutkoska,
R.; Zubieta, J. Inorg. Chem. 1982, 21, 2383. (b) Chatt, J.; Fakley, M. E.;
Hitchcock, P. B.; Richards, R. L.; Luongthi, N. T. J. Chem. Soc., Dalton
Trans. 1982, 345. (c) Walsh, P. J.; Carney, M. J.; Bergman, R. G. J. Am.
Chem. Soc. 1991, 113, 6343. (d) Li, Y.; Shi, Y.; Odom, A. L. J. Am. Chem.
Soc. 2004, 126, 1794.
(10) (a) Barrientos-Penna, C. F.; Einstein, F. W. B.; Jones, T.; Sutton, D. Inorg.
Chem. 1982, 21, 2578. (b) Einstein, F. W. B.; Jones, T.; Hanlan, A. J. L.;
Sutton, D. Inorg. Chem. 1982, 21, 2585.
Preliminary studies of the reactivity of aminonitrene complex 4 are
summarized in Scheme 4. In the presence of excess CO, the iridium(I)
carbonyl complex was formed within minutes, along with the azopi-
peridine 11. It is likely that this reaction occurs by coordination of
CO, followed by release of the free isodiazene, which is known to
undergo dimerization to form tetrazene 11.19 Treatment of 4 with MeI
immediately formed the iridium(III) methyl iodide and the tetrazene
11. The reaction of 4 with phenol formed the hydrido iridium(III)
phenoxide complex after 7 days at room temperature. In this reaction
dipyridododecahydro-s-tetrazine (12) was formed exclusively over the
azopiperidine 11. Tetrazine 12 is known to form over 11 in protic
media.20 Finally, addition of 4 atm of H2 to the aminonitrene led to
the formation of the iridium tetrahydride and 1-aminopiperidine,
indicating that both of the N-H bond activation steps are reversible.
In summary, we have shown that one or two N-H bond
cleavages of hydrazines occur to form a hydrido hydrazido or an
aminonitrene complex, depending on the ligand at iridium and the
substituents on the hydrazine. The reactions with methyl-substituted
hydrazines formed a mixture of aminonitrene complexes and the
combination of isocyanide iridium(III) dihydrides and ammonia by
initial oxidative addition of the methyl C-H bond and subsequent
N-N bond cleavage. Studies to generate additional nitrene deriva-
tives on this metal-ligand framework are in progress.
(11) Cordero, B.; Gomez, V.; Platero-Prats, A. E.; Reves, M.; Echeverria, J.;
Cremades, E.; Barragan, F.; Alvarez, S. Dalton Trans. 2008, 2832.
(12) Hydrazido complex 3a bearing the piperidine group contains a similarly
bent C-Ir-N angle.
(13) Weinhold, F.; Landis, C. R. Chem. Educ.: Res. Pract. 2001, 2, 91.
(14) Kanzelberger, M.; Singh, B.; Czerw, M.; Krogh-Jespersen, K.; Goldman,
A. S. J. Am. Chem. Soc. 2000, 122, 11017.
(15) Choi, J.; Choliy, Y.; Zhang, X.; Emge, T. J.; Krogh-Jespersen, K.; Goldman,
A. S. J. Am. Chem. Soc. 2009, 131, 15627.
(16) The monohydride from the first N-H activation was not observed.
(17) This signal was absent after removal of the volatile materials but was
regenerated by adding NH3.
(18) Zhang, X.; Emge, T. J.; Ghosh, R.; Goldman, A. S. J. Am. Chem. Soc.
2005, 127, 8250.
(19) (a) Back, T. G. J. Chem. Soc., Chem. Commun. 1981, 530. (b) Hwu, J. R.;
Wang, N.; Yung, R. T. J. Org. Chem. 1989, 54, 1070.
(20) Lemal, D. M.; Rave, T. W. J. Am. Chem. Soc. 1965, 87, 393.
JA1053835
9
11460 J. AM. CHEM. SOC. VOL. 132, NO. 33, 2010