ACS Catalysis
Page 4 of 6
The manuscript was written through contributions of all authors. /
All authors have given approval to the final version of the manu-
script.
1
2
3
4
ACKNOWLEDGMENT
5
6
This research was partially supported by the Society of Iodine Sci-
ence (SIS) and the Asahi Glass Foundation.
7
8
REFERENCES
9
(1) (a) Farina, A.; Meille, S. V.; Messina, M. T.; Metrangolo, P.;
Resnati, G.; Vecchio, G. Resolution of Racemic 1,2-Dibromohex-
afluoropropane through Halogen-Bonded Supramolecular Helices. An-
gew. Chem. Int. Ed. 1999, 38, 2433–2436. (b) Nguyen, H. L.; Horton,
P. N.; Hursthouse, M. B.; Legon, A. C.; Bruce, D. W. Halogen Bond-
ing:ꢀ A New Interaction for Liquid Crystal Formation. J. Am. Chem.
Soc. 2004, 126, 16–17. (c) Takezawa, H.; Murase, T.; Resnati, G.;
Metrangolo, P.; Fujita, M. Halogen‐Bond‐Assisted Guest Inclusion
in a Synthetic Cavity. Angew. Chem. Int. Ed. 2015, 54, 8411–8414. (d)
Gilday, L. C.; Robinson, S. W.; Barendt, T. A.; Langton, M. J.; Mul-
laney, B. R.; Beer, P. D. Halogen Bonding in Supramolecular Chemis-
try. Chem. Rev. 2015, 115, 7118–7195. (e) Jiang, S.; Zhang, L.; Cui,
D.; Yao, Z.; Gao, B.; Lin, J.; Wei, D. The Important Role of Halogen
Bond in Substrate Selectivity of Enzymatic Catalysis. Sci. Rep. 2016,
6, 34750. (f) Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.;
Priimagi, A.; Resnati, G.; Terraneo, G. The Halogen Bond. Chem. Rev.
2016, 116, 2478–2601. (g) Wang, H.; Wang, W.; Jin, W. J. σ-Hole
Bond vs π-Hole Bond: A Comparison Based on Halogen Bond. Chem.
Rev. 2016, 116, 5072–5104. (h) Sun, X.; Wang, W.; Li, Y.; Ma, J.; Yu.
S. Halogen-Bond-Promoted Double Radical Isocyanide Insertion under
Visible-Light Irradiation: Synthesis of 2‑ Fluoroalkylated Quinoxa-
lines. Org. Lett. 2016, 18, 4638−4641. (i) Scholfield, M. R.; Ford, M.
C.; Carlsson, A.-C. C.; Butta, H.; Mehl, R. A.; Ho, P. S. Structure−En-
ergy Relationships of Halogen Bonds in Proteins. Biochemistry 2017,
56, 2794−2802. (j) Wang, Y.; Wang, J.; Li, G.-X.; He, G.; Chen, G.
Halogen-Bond-Promoted Photoactivation of Perfluoroalkyl Iodides: A
Photochemical Protocol for Perfluoroalkylation Reactions. Org. Lett.
2017, 19, 1442−1445. (k) Desiraju, G. R.; Ho, P. S.; Kloo, L.; Legon,
A. C.; Marquardt, R.; Metrangolo, P.; Politzer, P.; Resnati, G.; Ris-
sanen, K. Definition of the halogen bond (IUPAC Recommendations
2013). Pure Appl. Chem. 2013, 85, 1711–1713.
(2) (a) Bulfield, D.; Huber, S. M. Halogen Bonding in Organic Syn-
thesis and Organocatalysis. Chem. Eur. J. 2016, 22, 14434–14450. (b)
Tepper, R.; Schubert, U. S. Recent Advances for Halogen Bonding in
Solution: From Anion Recognition through Templated Self-Assembly
to Organocatalysis. Angew. Chem. Int. Ed. 2018, 57, 6004–6016.
(3) (a) Walter, S. M.; Kniep, F.; Herdtweck, E.; Huber, S. M. Halo-
gen-Bond-Induced Activation of a Carbon-Heteroatom Bond. Angew.
Chem. Int. Ed. 2011, 50, 7187–7191. (b) He, W.; Ge, Y. C.; Tan, C. H.
Halogen-Bonding-Induced Hydrogen Transfer to C═N Bond with
Hantzsch Ester. Org. Lett. 2014, 16, 3244–3247. (c) Jungbauer, S. H.;
Walter, S. M.; Schindler, S.; Rout, L.; Kniep, F.; Huber, S. M. Activa-
tion of a carbonyl compound by halogen bonding. Chem. Commun.
2014, 50, 6281–6284. (d) Saito, M.; Tsuji, N.; Kobayashi, Y.; Take-
moto, Y. Direct Dehydroxylative Coupling Reaction of Alcohols with
Organosilanes through Si–X Bond Activation by Halogen Bonding.
Org. Lett. 2015, 17, 3000–3003. (e) Jungbauer, S. H.; Huber, S. M.
Cationic Multidentate Halogen-Bond Donors in Halide Abstraction Or-
ganocatalysis: Catalyst Optimization by Preorganization. J. Am. Chem.
Soc. 2015, 137, 12110–12120. (f) Saito, M.; Kobayashi, Y.; Tsuzuki,
S.; Takemoto, Y. Electrophilic Activation of Iodonium Ylides by Hal-
ogen-Bond-Donor Catalysis for Cross-Enolate Coupling. Angew.
Chem. Int. Ed. 2017, 56, 1–6. (g) Gliese, J.-P.; Jungbauer, S. H.; Huber,
S. M. A halogen-bonding-catalyzed Michael addition reaction. Chem.
Commun. 2017, 53, 12052–12055. (h) Kobayashi, Y.; Nakatsuji, Y.; Li,
S.; Tsuzuki, S.; Takemoto, Y. Direct N-Glycofunctionalization of Am-
ides with Glycosyl Trichloroacetimidate by Thiourea/Halogen Bond
Donor Co-Catalysis. Angew. Chem. Int. Ed. 2018, 57, 3646–3650. (i)
Chan, Y.-C.; Yeung, Y.-Y. Halogen Bond Catalyzed Bromocarbocy-
clization. Angew. Chem. Int. Ed. 2018, 57, 3483–3487. (j) Heinen, F.;
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Scheme 3. (a) Plausible Reaction Intermediates I or II for
the Mukaiyama Aldol Reactions and (b) Hydrogen Transfer
Reactions, Using a Catalytic Amount of 1b. (c) X-ray Crys-
tallographic Structure of 1/1 Halogen Bonding Complex
1b/6h (CCDC 1834151); Thermal Ellipsoids at 50% Proba-
bility and Hydrogen Atoms Omitted for Clarity.
In conclusion, we have disclosed the new halogen-bond do-
nors FBSM-I and FBDT-I, which contain sp3-hybridized car-
bon-iodine bonds (Csp3–I). Both FBSM-I and FBDT-I effi-
ciently catalyze the Mukaiyama aldol reaction of aldehydes
with silyl enol ethers and the hydrogen-transfer reduction of
quinolines with a Hantzsch ester to furnish the corresponding
products in high yield. The highly electron-withdrawing nature
of the fluorobissulfonyl-methane scaffold results in the for-
mation of σ-holes on the surface of the iodine atoms in FBSM-
I and FBDT-I, and these were examined by DFT calculations.
Halogen-bonding interactions induced by FBSM-I and FBDT-I
were confirmed in the solid state using single-crystal X-ray dif-
fraction analyses, and in solution using 19F and 13C NMR titra-
tion experiments.13 Considering that the structural variation of
previously reported halogen-bond donors are essentially limited
to iodo-compounds with a sp2-hybridized carbon-iodine bond
(Csp2–I), our fluorobissulfonylmethyl iodide scaffold for halo-
gen-bond donors should present an attractive alternative for the
design of new halogen-bond catalysts that contain a tetra-sub-
stituted chiral carbon center. Further applications of this con-
cept for the design of novel chiral halogen-bond donors for en-
antioselective reactions are currently under investigation. Be-
sides, 1a is used for radical addition of terminal alkenes under
reaction conditions,9 it might be possible to show a unique us-
age of 1 as both a catalyst and a reactant in a tandem process
using a stoichiometric amount of 1, i.e., 1-catalyzed aldol reac-
tions of substrates with a terminal alkene followed by the radi-
cal addition of 1 to the terminal alkene moiety of the substrates.
ASSOCIATED CONTENT
Supporting Information
The Supporting Information is available free of charge on the
Experimental details, analytical data (HRMS), and copies of
1H, 13C and 19F NMR spectra.
AUTHOR INFORMATION
Corresponding Author
Author Contributions
ACS Paragon Plus Environment