Page 5 of 7
Journal of the American Chemical Society
Qi, W.-Y.; Xu, B.; Xu, M.-H. J. Am. Chem. Soc. 2015, 137, 5268. (c) Cheng,
We proposed a mechanism of the rhodium-catalyzed B–H
bond insertion reaction by analogy with the other rhodium-
catalyzed carbene transfer reactions (Scheme 4).7 The reac-
tion starts with the generation of diazo compound I from a
tosylhydrazone through Bamford-Stevens process.6 Rhodium
catalyst then coordinates with the electron-rich diazo con-
nected carbon (step a, II), extrudes nitrogen gas, and gener-
ates highly active rhodium carbene III (step b). The rhodium
carbene III finally inserts into a B–H bond of the borane ad-
duct to give the insertion product (step c). A deuterium label-
ing experiment (Scheme 5a) showed that all the deuterium
atoms located either at boron or at α-carbon of the insertion
product 3ae-d3, while a kinetic isotopic effect experiment
(Scheme 5b) exhibited a minor kH/kD (1.5:1). These experi-
ments indicate a concerted and fast B–H bond insertion pro-
cess (TS).3 The studies towards detailed mechanism under-
standing of the enantioselectivity are undergoing in our la-
boratory.
Q.-Q.; Xu, H.; Zhu, S.-F.; Zhou, Q.-L. Acta Chim. Sinica 2015, 73, 326. (d)
Hyde, S.; Veliks, J.; Liegault, B.; Grassi, D.; Taillefer, M.; Gouverneur, V.
Angew. Chem., Int. Ed. 2016, 55, 3785. (e) Allen, T. H.; Curran, D. P. J.
Org. Chem. 2016, 81, 2094. (f) Yang, J.-M.; Li, Z.-Q.; Li, M.-L.; He, Q.;
Zhu, S.-F.; Zhou, Q.-L. J. Am. Chem. Soc. 2017, 139, 3784. (g) Kan, S. B. J.;
Huang, X.; Gumulya, Y.; Chen, K.; Arnold, F.-H. Nature 2017, 552, 132.
(h) Zeineddine, A.; Rekhroukh, F.; Carrizo, E. D. S.; Mallet-Ladeira, S.;
Miqueu, K.; Amgoune, A.; Bourissou, D. Angew. Chem., Int. Ed. 2018,
57, 1306.
(5) For recent reviews on carbene insertion reactions, see: (a) Zhu,
S.-F.; Zhou, Q.-L. Acc. Chem. Res. 2012, 45, 1365. (b) Zhu, S.-F.; Zhou,
Q.-L. Nat. Sci. Rev. 2014, 1, 580. (c) Ford, A.; Miel, H.; Ring, A.; Slattery,
C. N.; Maguire, A. R.; McKervey, M. A. Chem. Rev. 2015, 115, 9981.
(6) For reviews, see: (a) Fulton, J. R.; Aggarwal, V. K.; de Vicente, J.
Eur. J. Org. Chem. 2005, 1479. (b) Barluenga, J.; Valdes, C. Angew.
Chem., Int. Ed. 2011, 50, 7486. (c) Shao, Z.; Zhang, H. Chem. Soc. Rev.
2012, 41, 560. (d) Xiao, Q.; Zhang, Y.; Wang, J. B. Acc. Chem. Res. 2012,
46, 236. For selected pioneering literatures, see: (e) Bamford, W. R.;
Stevens, T. S. J. Chem. Soc. 1952, 4735. (f) Friedman, L.; Shechter, H. J.
Am. Chem. Soc. 1959, 81, 5512. (g) Closs, G. L.; Moss, R. A. J. Am. Chem.
Soc. 1964, 86, 4042.
(7) For reviews on rhodium-catalyzed carbene transfer reactions,
see: (a) Doyle, M.; Forbes, D. C. Chem. Rev. 1998, 98, 911. (b) Deng, Y.;
Qiu, H.; Srinivas, H. D.; Doyle, M. P. Current Org. Chem. 2016, 20, 61.
See also ref. 5c. For selected rhodium-catalyzed carbene transfer reac-
tions using unstabilized diazo compounds as carbene precursors, see:
(c) Werner, H.; Schneider, M. E.; Bosch, M.; Wolf, J.; Teuben, J. H.;
Meetsma, A.; Troyanov, S. I. Chem. Eur. J. 2000, 6, 3052. (d) Aggarwal,
V. K.; Alonso, E.; Fang, G.; Ferrara, M.; Hynd, G.; Porcelloni, M. Angew.
Chem., Int. Ed. 2001, 40, 1433. (e) Aggarwal, V. K.; de Vicente, J.; Bon-
nert, R. V. Org. Lett. 2001, 3, 2785. (f) Li, Y.; Huang, Z.; Wu, X.; Xu, P.-F.;
Jin, J.; Zhang, Y.; Wang, J. Tetrahedron 2012, 68, 5234. (g) Soldi, C.;
Lamb, K. N.; Squitieri, R. A.; Gonzalez-López, M.; Di Maso, M. J.; Shaw, J.
T. J. Am. Chem. Soc. 2014, 136, 15142. (h) Natori, Y.; Ito, M.; Anada, M.;
Nambu, H.; Hashimoto, S. Tetrahedron Lett. 2015, 56, 4324. (i) Su, N.;
Deng, T.; Wink, D. J.; Driver, T. G. Org. Lett. 2017, 19, 3990.
(8) For other transition-metal-catalyzed carbene transfer reactions
use of diaryl and alkyl-aryl diazo compounds and precursors, see: (a)
Cheung, W.-H.; Zheng, S.-L.; Yu, W.-Y.; Zhou, G.-C.; Che, C.-M. Org. Lett.
2003, 5, 2535. (b) Barluenga, J.; Moriel, P.; Valdés, C.; Aznar, F. Angew.
Chem., Int. Ed. 2007, 46, 5587. (c) Barluenga, J.; Tomás-Gamasa, M.;
Moriel, P.; Aznar, F.; Valdés, C. Chem. Eur. J. 2008, 14, 4792. (d) Feng,
X.-W.; Wang, J.; Zhang, J.; Yang, J.; Wang, N.; Yu, X.-Q. Org. Lett. 2010,
12, 4408. (e) Zhao, X.; Wu, G.; Zhang, Y.; Wang, J. J. Am. Chem. Soc.
2011, 133, 3296. (f) Zhou, L.; Ye, F.; Ma, J.; Zhang, Y.; Wang, J. Angew.
Chem., Int. Ed. 2011, 50, 3510. (g) Hamze, A.; Tréguier, B.; Brion, J.-D.;
Alami, M. Org. Biomol. Chem. 2011, 9, 6200. (h) Yao, T.; Hirano, K.;
Satoh, T.; Miura, M. Angew. Chem., Int. Ed. 2012, 51, 775. (i) Liu, H.;
Wei, Y.; Cai, C. New J. Chem. 2016, 40, 674.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
In summary, we have described a protocol for rhodium-
catalyzed B–H bond insertion reactions of borane adducts and
unstabilized diazo compounds generated in situ from tosylhy-
drazones at low temperature. This protocol constitutes a new
method for preparation of organoboranes starting from readi-
ly available aldehydes or ketones in reasonable yields and
with high enantioselectivity and good functional group toler-
ance. Investigation of the mechanism and additional synthetic
applications of this reaction is underway in our laboratory.
ASSOCIATED CONTENT
Supporting Information
Experimental procedures, spectral data, and computational
study results. The Supporting Information is available free of
AUTHOR INFORMATION
Corresponding Author
*sfzhu@nankai.edu.cn
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
(9) For a review on the use of alkyl substituted diazo compounds in
rhodium-catalyzed intermolecular reactions that proceed with pref-
erence over β-hydride elimination, see: (a) DeAngelis, A.; Panish, R.;
Fox, J. M. Acc. Chem. Res. 2016, 49, 115. For selected examples, see: (b)
Taber, D. F.; Joshi, P. V. J. Org. Chem. 2004, 69, 4276. (c) Panne, P.; Fox,
J. M. J. Am. Chem. Soc. 2007, 129, 22. (d) DeAngelis, A.; Taylor, M. T.;
Fox, J. M. J. Am. Chem. Soc. 2009, 131, 1101. (e) DeAngelis, A.;
Dmitrenko, O.; Yap, G. P. A.; Fox, J. M. J. Am. Chem. Soc. 2009, 131,
7230. (f) Goto, T.; Takeda, K.; Shimada, N.; Nambu, H.; Anada, M.; Shi-
ro, M.; Ando, K.; Hashimoto, S. Angew. Chem., Int. Ed. 2011, 50, 6803.
(10) Doyle, M. P.; Winchester, W. R.; Hoorn, J. A. A.; Lynch, V; Simon-
sen, S. H.; Ghosh, R., J. Am. Chem. Soc. 1993, 115, 9968.
(11) Davies, H. M. L.; Bruzinski, P. R.; Lake, D. H.; Kong, N.; Fall, M. J. J.
Am. Chem. Soc. 1996, 118, 6897.
(12) Qin, C.; Boyarskikh, V.; Hansen, J. H.; Hardcastle, K. I.; Musaev, D.
G.; Davies, H. M. L. J. Am. Chem. Soc. 2011, 133, 19198.
(13) (a) Watanabe, N.; Ogawa, T.; Ohtake, Y.; Ikegami, S.; Hashimoto,
S. Synlett 1996, 85. (b) Adly, F. G.; Gardiner, M. G.; Ghanem, A. Chem.
Eur. J. 2016, 22, 3447.
(14) Lindsay, V. N. G.; Lin, W.; Charette, A. B. J. Am. Chem. Soc. 2009,
131, 16383.
We thank the National Natural Science Foundation of China
(21625204, 21790332, 21532003), the “111” project
(B06005) of the Ministry of Education of China, the National
Program for Special Support of Eminent Professionals, and the
Fundamental Research Funds for the Central Universities for
financial support.
REFERENCES
(1) For selected reviews, see: (a) Organoboranes for Syntheses; Ra-
machandran, P. V.; Brown, H. C. Eds.; ACS Symposium Series 783;
American Chemical Society: Washington, DC, 2001. (b) Hall, D. G. Bo-
ronic Acids; Wiley-VCH: Weinheim, 2006. (c) Jana, R.; Pathak, T. P.;
Sigman, M. S. Chem. Rev. 2011, 111, 1417. (d) Suzuki, A. Angew. Chem.,
Int. Ed. 2011, 50, 6722. (e) Cherney, A. H.; Kadunce, N. T.; Reisman, S.
E. Chem. Rev. 2015, 115, 9587. (f) Leonori, D.; Aggarwal, V. K. Angew.
Chem., Int. Ed. 2015, 54, 1082.
(2) Li, X.; Curran, D. P. J. Am. Chem. Soc. 2013, 135, 12076.
(3) Cheng, Q.-Q.; Zhu, S.-F.; Zhang, Y.-Z.; Xie, X.-L.; Zhou, Q.-L. J. Am.
Chem. Soc. 2013, 135, 14094.
(4) For a review, see: (a) Yang, J.-M.; Li, Z.-Q.; Zhu, S.-F. Chin. J. Org.
Chem. 2017, 37, 2497. For other examples, see: (b) Chen, D.; Zhang, X.;
(15) Müller, P.; Allenbach, Y.; Robert, E. Tetrahedron: Asymmetry
2003, 14, 779.
ACS Paragon Plus Environment