Chemistry & Biology
Proteomic Tools: Acylhydrazone Cleavable Linker
Flinn, N.S., Quibell, M., Turnell, W.G., Monk, T.P., and Ramjee, M.K. (2004).
Novel chemoselective linkage chemistry toward controlled loading of ligands
to proteins through in situ real-time quantification of conjugate formation. Bio-
conjug. Chem. 15, 1010–1020.
tion’’ of azides and terminal alkynes. Angew. Chem. Int. Ed. Engl. 41, 2596–
2599.
Sawant, R.M., Hurley, J.P., Salmaso, S., Kale, A., Tolcheva, E., Levchenko,
T.S., and Torchilin, V.P. (2006). ‘‘Smart’’ drug delivery systems: Double-tar-
geted pH-responsive pharmaceutical nanocarriers. Bioconjug. Chem. 17,
943–949.
Fonovic, M., Verhelst, S.H., Sorum, M.T., and Bogyo, M. (2007). Proteomics
evaluation of chemically cleavable activity-based probes. Mol. Cell. Proteo-
mics 6, 1761–1770.
Scriba, G.K.E. (2004). Affinity chromatography. In: Molecular Biology in Medic-
inal Chemistry, T. Dingermann, ed. (Weinheim, Germany: Wiley-VCH Verlag
GmbH), pp. 211–241.
Gogoi, P., Hazarika, P., and Konwar, D. (2005). Surfactant/I2/water: An efficient
system for deprotection of oximes and imines to carbonyls under neutral
conditions in water. J. Org. Chem. 70, 1934–1936.
Shimkus, M., Levy, J., and Herman, T. (1985). A chemically cleavable biotiny-
lated nucleotide: usefulness in the recovery of protein-DNA complexes from
avidin affinity columns. Proc. Natl. Acad. Sci. USA 82, 2593–2597.
Goral, V., Nelen, M.I., Eliseev, A.V., and Lehn, J.M. (2001). Double-level
‘‘orthogonal’’ dynamic combinatorial libraries on transition metal template.
Proc. Natl. Acad. Sci. USA 98, 1347–1352.
Smith, T.R., Clark, A.J., Napier, R., Taylor, P.C., Thompson, A.J., and Marsh, A.
(2007). Function and stability of abscisic acid acyl hydrazone conjugates by
LC-MS2 of ex vivo samples. Bioconjug. Chem. 18, 1355–1359.
Green, N.M. (1990). Avidin and streptavidin. Methods Enzymol. 184, 51–67.
Hirsch, J.D., Eslamizar, L., Filanoski, B.J., Malekzadeh, N., Haugland, R.P.,
Beechem, J.M., and Haugland, R.P. (2002). Easily reversible desthiobiotin
binding to streptavidin, avidin, and other biotin-binding proteins: uses for
protein labeling, detection, and isolation. Anal. Biochem. 308, 343–357.
Speers, A.E., Adam, G.C., and Cravatt, B.F. (2003). Activity-based protein
profiling in vivo using a copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition.
J. Am. Chem. Soc. 125, 4686–4687.
Holland, M.J., Holland, J.P., Thill, G.P., and Jackson, K.A. (1981). The primary
structures of two yeast enolase genes. Homology between the 50 noncoding
flanking regions of yeast enolase and glyceraldehyde-3- phosphate dehydro-
genase genes. J. Biol. Chem. 256, 1385–1395.
Speers, A.E., and Cravatt, B.F. (2004). Profiling enzyme activities in vivo using
click chemistry methods. Chem. Biol. 11, 535–546.
Speers, A.E., and Cravatt, B.F. (2005). A tandem orthogonal proteolysis
strategy for high-content chemical proteomics. J. Am. Chem. Soc. 127,
10018–10019.
Holmberg, A., Blomstergren, A., Nord, O., Lukacs, M., Lundeberg, J., and
Uhlen, M. (2005). The biotin-streptavidin interaction can be reversibly broken
using water at elevated temperatures. Electrophoresis 26, 501–510.
Sun, X.-L., Stabler, C.L., Cazalis, C.S., and Chaikof, E.L. (2006). Carbohydrate
and protein immobilization onto solid surfaces by sequential Diels–Alder and
azide–alkyne cycloadditions. Bioconjug. Chem. 17, 52–57.
Howarth, M., Chinnapen, D.J., Gerrow, K., Dorrestein, P.C., Grandy, M.R., Kel-
leher, N.L., El-Husseini, A., and Ting, A.Y. (2006). A monovalent streptavidin
with a single femtomolar biotin binding site. Nat. Methods 3, 267–273.
Syakaev, V.V., Podyachev, S.N., Buzykin, B.I., Latypov, S.K., Habicher, W.D.,
and Konovalov, A.I. (2006). NMR study of conformation and isomerization of
aryl- and heteroarylaldehyde 4-tert-butylphenoxyacetylhydrazones. J. Mol.
Struct. 788, 55–62.
Jenne, A., and Famulok, M. (1999). Disruption of the streptavidin interaction
with biotinylated nucleic acid probes by 2-mercaptoethanol. Biotechniques
26, 249–254.
Thiele, C., and Fahrenholz, F. (1994). Photocleavable biotinylated ligands for
Kale, A.A., and Torchilin, V.P. (2007). Design, synthesis and characterization of
pH-sensitive PEG-PE conjugates for stimuli-sensitive pharmaceutical nano-
carriers: The effect of substitutes at the hydrazone linkage on the pH-stability
of PEG-PE conjugates. Bioconjug. Chem. 18, 363–370.
affinity chromatography. Anal. Biochem. 218, 330–337.
Tong, X., and Smith, L.M. (1992). Solid-phase method for the purification of
DNA sequencing reactions. Anal. Chem. 64, 2672–2677.
Kazmierski, W.M., and McDermed, J. (1995). Synthesis of the carbonic acid
benzotriazol-1-yl-ester-(2-biotinylamino)-9h-fluoren-9-ylmethyl ester: A con-
venient transient-biotinylation reagent for use in affinity chromatography.
Tetrahedron Lett. 36, 9097–9100.
Tornoe, C.W., Christensen, C., and Meldal, M. (2002). Peptidotriazoles on solid
phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cyclo-
additions of terminal alkynes to azides. J. Org. Chem. 67, 3057–3064.
van der Veken, P., Dirksen, E.H.C., Ruijter, E., Elgersma, R.C., Heck, A.J.R.,
Rijkers, D.T.S., Slijper, M., and Liskamp, R.M.J. (2005). Development of a novel
chemical probe for the selective enrichment of phosphorylated serine- and
threonine-containing peptides. ChemBioChem 6, 2271–2280.
King, T.P., Zhao, S.W., and Lam, T. (1986). Preparation of protein conjugates
via intermolecular hydrazone linkage. Biochemistry 25, 5774–5779.
Lin, W.-C., and Morton, T.H. (1991). Two-step affinity chromatography. Model
systems and an example using biotin-avidin binding and a fluoridolyzable
linker. J. Org. Chem. 56, 6850–6856.
Verhelst, S.H.L., Fonovic, M., and Bogyo, M. (2007). A mild chemically cleav-
able linker system for functional proteomic applications. Angew. Chem. Int.
Ed. Engl. 46, 1284–1286.
MacKinnon, A.L., Garrison, J.L., Hegde, R.S., and Taunton, J. (2007). Photo-
leucine incorporation reveals the target of a cyclodepsipeptide inhibitor of
cotranslational translocation. J. Am. Chem. Soc. 129, 14560–14561.
Walsh, D.P., and Chang, Y.T. (2006). Chemical genetics. Chem. Rev. 106,
2476–2530.
Malmstadt, N., Hyre, D.E., Ding, Z., Hoffman, A.S., and Stayton, P.S. (2003).
Affinity thermoprecipitation and recovery of biotinylated biomolecules via
Wang, W., Wang, S.X., Qin, X.Y., and Li, J.T. (2005). Reaction of aldehydes and
pyrazolones in the presence of sodium dodecyl sulfate in aqueous media.
Synth. Commun. 35, 1263–1269.
a
mutant streptavidin–smart polymer conjugate. Bioconjug. Chem. 14,
575–580.
Weerapana, E., Simon, G.M., and Cravatt, B.F. (2008). Disparate proteome
Marie, J., Seyer, R., Lombard, C., Desarnaud, F., Aumelas, A., Jard, S., and
Bonnafous, J.C. (1990). Affinity chromatography purification of angiotensin II
receptor using photoactivable biotinylated probes. Biochemistry 29, 8943–
8950.
reactivity profiles of carbon electrophiles. Nat. Chem. Biol. 4, 405–407.
Wilchek, M., and Bayer, E. (1990). Introduction to avidin-biotin technology.
Methods Enzymol. 184, 14–45.
Wu, S.C., and Wong, S.L. (2005). Engineering soluble monomeric streptavidin
Morag, E., Bayer, E.A., and Wilchek, M. (1996). Reversibility of biotin-binding
with reversible biotin binding capability. J. Biol. Chem. 280, 23225–23231.
by selective modification of tyrosine in avidin. Biochem. J. 316, 193–199.
Rostovtsev, V.V., Green, L.G., Fokin, V.V., and Sharpless, K.B. (2002). A step-
wise Huisgen cycloaddition process: Copper(I)-catalyzed regioselective ‘‘liga-
Zeheb, R., and Orr, G.A. (1986). Use of avidin-iminobiotin complexes for puri-
fying plasma membrane proteins. Methods Enzymol. 122, 87–94.
772 Chemistry & Biology 16, 763–772, July 31, 2009 ª2009 Elsevier Ltd All rights reserved