The Journal of Organic Chemistry
Article
Products Prepared via Tandem Ozonolysis. The following
were prepared according to the experimental procedures described. All
compounds afforded spectral data identical to values described in the
literature.
ACKNOWLEDGMENTS
■
The research was conducted with funding from the NSF
(CHE-1057982) in facilities remodeled with support from the
NIH (RR016544).
(E)-Ethyl 11-acetoxyundec-2-enoate (via Horner−Emmons
reaction): colorless oil; Rf = 0.5 (10% EA/hex); 1H (400 MHz,
CDCl3) δ 6.98 (1H, dt, 7.0, 15.7), 5.82 (1H, dt, 1.5, 15.6), 4.21 (2H, q,
7.1), 4.07 (2H,t, 6.7), 2.19 (2H, dq, ∼1, 6.7), 2.06 (3H, s), 1.63 (2H,
p, 6.7), 1.47 (2H, p, 6.9), 1.30 (11H, t, 7.1); 13C (100.6 MHz, CDCl3)
δ 171.4, 166.8, 149.4, 121.3, 64.6, 60.1, 32.2, 29.2, 29.1, 29.0, 28.6,
28.0, 25.9, 21.0, 14.3; IR 2929, 2856, 1717 cm−1; HRMS (ESI,
MeOH/H2O, NaOAc), calcd for C15H26NaO4 (M + Na)+ 293.1729,
found 293.1722 (−2.0 ppm).
DEDICATION
Dedicated to the memory of Robert E. Ireland.
■
REFERENCES
■
(1) (a) Bailey, P. S. Ozonation in Organic Chemistry: Vol 1 (Olefinic
Compounds); Academic Press: New York, 1982. For more recent
overviews of ozonolysis, see: (b) McGuire, J.; Bond, G.; Haslam, P. J.
In Handbook of Chiral Chemicals, 2nd ed.; Taylor & Francis: Boca
Raton, 2006; 165; (c) Van Ornum, S. G.; Champeau, R. M.; Pariza, R.
Chem. Rev. 2006, 106, 2990. (d) East, M. Chem. Today (Chim. Oggi)
2006, 24, 46.
(2) See, for example: Kula, J. Chem. Health Saf. 1999, 6, 21. Zabicky,
J. In The Chemistry of the Peroxide Group; Rappoport, Z., Ed.; John
Wiley & Sons: Chichester, 2006; Vol. 2, Part 2, p 597. Ragan, J. A.; am
Ende, D. J.; Brenek, S. J.; Eisenbeis, S. A; Singer, R. A.; Tickner, D. L.;
Teixeira, J. J.; Vanderplas, B. C.; Weston, N. Org. Process Res. Dev.
2003, 7, 155. Hida, T.; Kikuchi, J.; Kakinuma, M.; Nogusa, H. Org.
Process Res. Dev. 2010, 14, 1485.
(3) For a description of an ozonolysis reactor designed to achieve
formation and decomposition of ozonides, see: http://www.
(4) For an example of a flow-based process, see: O’Brien, M.;
Baxendale, I. R.; Ley, S. V. Org. Lett. 2010, 12, 1596.
(5) (a) Willand-Charnley, R.; Fisher, T.; Johnson., B.; Dussault, P. H.
Org. Lett. 2012, 14, 2242. (b) Schiaffo, C. E.; Dussault, P. H. J. Org.
Chem. 2008, 73, 4688. (c) Schwartz, C.; Raible, J.; Mott, K.; Dussault,
P. H. Tetrahedron 2006, 62, 10747.
(6) Criegee, R. Angew. Chem., Int. Ed. Engl. 1975, 14, 745.
(7) Although primary ozonide and molozonide are often used
interchangeably in older literature, the latter term is now
predominantly used to describe alternate structures.
(8) Bunnelle, W. H. Chem. Rev. 1991, 91, 335.
(9) Kuczkowski, R. L. Chem. Soc. Rev. 1992, 21, 79.
(10) Yamamoto, Y.; Niki, E.; Kamiya, Y. Bull. Chem. Soc. Jpn. 1982,
55, 2677.
(11) Steinfeldt, N.; Bentrup, U.; Jaehnisch, K. Ind. Eng. Chem. Res.
2010, 49, 72.
(E)-Ethyl 5-phenylpent-2-enoate (via Horner−Emmons reaction):
Rf = 0.7 in (10% EA/hex).38
(E)-Ethyl 4-acetoxybut-2-enoate (via Horner−Emmons reaction):
Rf = 0.4 in (10% EA/hex).39
(E)-Ethyl 7-oxooct-2-enoate (via Horner−Emmons reaction): Rf =
0.7 in (10% EA/hex).40
(Z)-Tridec-5-ene (via Wittig reaction): Rf = 0.92 (10% EA/hex).41
(Z)-Tetradec-5-ene (via Wittig reaction): Rf = 0.70 (10% EA/
hex).41
(Z)-Oct-3-en-1-ylbenzene (via Wittig reaction): Rf = 0.75 (10%
EA/hex).42
2-(1-Hydroxy-3-phenylpropyl)cyclohexanone (via aldol reaction):
Rf = 0.22 (10% EA/hex), isolated as an approximately 3:1 mixture of
anti and syn isomers, determined by comparison on NMR spectra with
literature reports. The stereochemical outcome is very similar to that
reported for corresponding reactions of 3-phenylpropanal.33
2-(1-Hydroxynonyl)cyclohexanone (via aldol reaction): Rf = 0.38
(10% EA/hex), isolated as an approximately 3:1 mixture of anti and
syn isomers, determined by comparison on NMR spectra against
literature reports. The stereochemical outcome is very similar to that
reported for corresponding reactions of analogous aldehydes.34
2-(1-Hydroxyoctyl)cyclohexanone (via aldol reaction): Rf = 0.40
(10% EA/hex).35
Decan-2-ol (via Grignard reaction): Rf = 0.20 (10% EA/hex).43
1-Phenyldecan-1-ol (via Grignard reaction): Rf = 0.26 in (10% EA/
hex).44
2-Phenylnopinol (via Grignard reaction): Rf = 0.20 (10% EA/
hex).45
4-tert-Butyl-1-methylcyclohexanol (via Grignard reaction): Rf =
0.20 (10% EA/hex).46
1,3-Diphenylpropan-1-ol (via Grignard reaction): Rf = 0.22 (10%
EA/hex).47
(12) Kropf, H. In Houben-Weyl Methoden Der Organische Chemie;
Kropf, H., Ed.; Georg Thieme: Stuttgart, 1988; Vol. E13/2, p 1111.
(13) Hon, Y. S.; Lin, S. W.; Chen, Y. J. Synth. Commun. 1993, 23,
1543−53. Hon, Y. S.; Lin, S. W.; Ling, L.; Chen, Y. J. Tetrahedron
1995, 51, 5019. For the direct conversion of terminal alkenes to
methyl esters in basic methanol, see: Marshall, J. A.; Garofalo, A. W. J.
Org. Chem. 1993, 58, 3675.
(14) See, for example: Chen, L.; Wiemer, D. F. J. Org. Chem. 2002,
67, 7561.
(15) See, for example: Årstad, E.; Barrett, A. G. M.; Hopkins, B. T.;
1-Phenyloctan-1-ol (via Grignard reaction): Rf = 0.33 (10% EA/
hex).46
1-Phenylhex-5-en-3-ol (via allylation reaction): Rf = 0.8 (10% EA/
hex).48
Dodec-1-en-4-ol (via allylation reaction): Rf = 0.36 (10% EA/
hex).49
Undec-1-en-4-ol (via allylation reaction): Rf = 0.34 (10% EA/
hex).50
Koebberling, J. Org. Lett. 2002, 4, 1975.
ASSOCIATED CONTENT
(16) For a theoretical exploration of the N-oxide fragmentation, see:
Hang, J.; Ghorai, P.; Finkenstaedt-Quinn, S. A.; Findik, I; Sliz, E.;
Kuwata, K. T; Dussault, P. H. J. Org. Chem. 2012, 77, 1233.
(17) Fleming, I; Dunogues, J.; Smithers, R. Org. React. 1989, 37, 57.
(18) Chandrasekhar, S.; Shyamsunder, T.; Prakash, S. J.; Prabhakar,
A.; Jagadeesh, B. Tetrahedron Lett. 2006, 47, 47.
(19) Kyasa, S.-K.; Fisher, T. J.; Dussault, P. H. Synthesis 2011, 3475.
(20) (a) For leading references, see ref 1a and: Pryde, E. H.; Anders,
D. E.; Teeter, H. M.; Cowan, J. C. J. Org. Chem. 1962, 27, 3055. For
sequential application of ozonolysis and hydrogenation within modular
units, see ref 3.
■
S
* Supporting Information
1H NMR of known molecules prepared as described above and
characterization (1H, 13C, IR and HRMS) for ethyl 11-acetoxy-
2-undecenoate. This material is available free of charge via the
AUTHOR INFORMATION
■
Corresponding Author
(21) Xu, S.; Toyama, T.; Nakamura, J.; Arimoto, H. Tetrahedron Lett.
2010, 51, 4534.
(22) Biellmann, J. F; Rodriguez, G. H. J. Org. Chem. 1996, 61, 1822.
Notes
The authors declare no competing financial interest.
(23) Bailey, P. S. J. Org. Chem. 1957, 22, 1548.
E
dx.doi.org/10.1021/jo3015775 | J. Org. Chem. XXXX, XXX, XXX−XXX