1830
Z. Wang et al. / Biochimica et Biophysica Acta 1804 (2010) 1817–1831
[22] S.J. Riedl, Y. Shi, Molecular mechanism of cell regulation during apoptosis, Nat.
Rev. Mol. Cell Biol. 5 (2004) 897–907.
[23] S. Kumar, Caspase function in programmed cell death, Cell Death Differ. 14 (2007)
32–43.
[24] S.K. Rupinder, A.K. Gurpreet, S. Manjeet, Cell suicide and caspases, Vascul.
Pharmacol. 46 (2007) 383–393.
[25] D.W. Chang, D. Ditsworth, H. Liu, S.M. Srinivasula, E.S. Alnemri, X. Yang,
Oligomerization is a general mechanism for the activation of apoptosis initiator
and inflammatory procaspases, J. Biol. Chem. 278 (2003) 16466–16469.
[26] P. Fuentes-Prior, G.S. Salvesen, The protein structure that shapes caspases activity,
specificity, activation and inhibition, Biochem. J. 384 (2004) 201–232.
[27] S.J. Riedl, G.S. Salvesen, The apoptosome: signaling platform of cell death, Nat. Rev.
Mol. Cell Biol. 8 (2007) 405–413.
[28] N.P.C. Walker, R.V. Talanian, K.D. Brady, L.C. Dang, N.J. Bump, C.R. Ferenz, S.
Franklin, T. Ghayur, M.C. Hackett, L.D. Hammill, L. Herzog, M. Hugunin, W. Houy, J.A.
Mankovich, L. McGuiness, E. Orlewicz, M. Paskind, C.A. Pratt, P. Reis, A. Summani, M.
Terranova, J.P. Welch, L. Xiong, A. Möller, D.E. Tracey, R. Kamen, W.W. Wong,
Crystal structure of the cysteine protease interleukin-1β-converting enzyme:
a (p20/p10)2 homodimer, Cell 78 (1994) 343–352.
complicated by the existence of over a dozen potential caspase targets
that are similar in mechanism and substrate recognition.
There is still much to be learned about the precise roles and
interrelationships of individual caspases in cellular dysfunction, and
selective inhibition of any one caspase may prove to be a daunting
task. The more we can learn about the detailed interactions between
caspases and their substrates or inhibitors, the closer we come to
being able to design specific drugs for specific diseases. The class of
caspase inhibitors described in the present work expands our view of
the catalytic sites in both an initiator and an executioner caspase.
Hopefully, these findings will provide insights as to the design of
drugs for multiple therapeutic indications that intervene at specific
points in the apoptotic cascade.
[29] K.P. Wilson, J. Black, J.A. Thomson, E.E. Kim, J.P. Griffith, M.A. Navia, M.A. Murcko,
S.P. Chambers, R.A. Aldape, S.A. Raybuck, S.J. Livingston, Structure and mechanism
of interleukin-1β converting enzyme, Nature 370 (1994) 270–275.
[30] A. Schweizer, C. Briand, M.G. Gruetter, Crystal structure of caspase-2, apical
initiator of the intrinsic apoptotic pathway, J. Biol. Chem. 278 (2003)
42441–42447.
[31] J. Rotonda, D.W. Nicholson, K.M. Fazil, M. Gallant, Y. Gareau, M. Labelle, E.P.
Peterson, D.M. Rasper, R. Ruel, J.P. Vaillancourt, N.A. Thornberry, J.W. Becker, The
three dimensional structure of apopain/CPP32, a key mediator of apoptosis, Nat.
Struct. Biol. 3 (1996) 619–625.
[32] P.R. Mittl, S. Di Marco, J.F. Krebs, X. Bai, D.S. Karanewsky, J.P. Priestle, M.G. Grütter,
Structure of recombinant human CPP32 in complex with the tetrapeptide acetyl-
Asp-Val-Ala-Asp fluoromethyl ketone, J. Biol. Chem. 272 (1997) 6539–6547.
[33] D. Lee, S.A. Long, J.L. Adamsa, G. Chanc, K.S. Vaidyac, T.A. Francisc, K. Kiklyd, J.D.
Winklere, C.-M. Sunge, C. Debouckf, S. Richardsonf, M.A. Levyg, W.E. DeWolf Jr., P.
M. Kellerg, T. Tomaszekg, M.S. Headh, M.D. Ryanh, R.C. Haltiwangerh, P.-H. Liangi,
C.A. Jansoni, P.J. McDevitti, K. Johansoni, N.O. Conchaj, W. Chanj, S.S. Abdel-
Meguidj, A.M. Badgerk, M.W. Larkk, D.P. Nadeauk, L.J. Suvak, M. Gowenk, M.E.
Nuttallkl, Potent and selective nonpeptide inhibitors of caspases 3 and 7 inhibit
apoptosis and maintain cell functionality, J. Biol. Chem. 275 (2000) 16007–16014.
[34] R. Ganesan, P.R.E. Mittl, S. Jelakovic, M.G. Gruetter, Extended substrate recognition
in caspase-3 revealed by high resolution X-ray structure analysis, J. Mol. Biol. 359
(2006) 1378–1388.
Acknowledgments
We thank Thomas L. Emmons for helpful discussions, and also the
staff of the IMCA-CAT beamlines. Use of the IMCA-CAT beamline 17-ID
at the Advanced Photon Source was supported by the companies of
the Industrial Macromolecular Crystallography Association through a
contract with the Illinois Institute of Technology. Use of the Advanced
Photon Source was supported by the US Department of Energy, Office
of Science, Office of Basic Energy Sciences, under contract no. W-31-
109-Eng-38.
References
[1] S. Elmore, Apoptosis: a review of programmed cell death, Toxicol. Pathol. 35
(2007) 495–516.
[2] P. Meier, A. Finch, G. Evan, Apoptosis in development, Nature 407 (1997)
796–801.
[3] N.N. Danial, S.J. Korsmeyer, Cell death: critical control points, Cell 116 (2004)
205–219.
[4] R.M. Siegel, Caspases at the crossroads of immune-cell life and death, Nat. Rev.
Immunol. 6 (2006) 308–317.
[35] R. Baumgartner, G. Meder, C. Briand, A. Decock, A. D'Arcy, U. Hassiepen, R. Morse,
M. Renatus, The crystal structure of caspase-6, a selective effector of axonal
degeneration, Biochem. J. 423 (2009) 429–439.
[5] J.F. Kerr, C.M. Winterford, B.V. Harmon, Apoptosis: its significance in cancer and
cancer therapy, Cancer 73 (1994) 2013–2026.
[6] A. Worth, A.J. Thrasher, H.B. Gaspar, Autoimmune lymphoproliferative syndrome:
molecular basis of disease and clinical phenotype, Br. J. Hematol. 133 (2006)
124–140.
[7] A. Benchoua, C. Guégan, C. Couriaud, H. Hosseini, N. Sampaïo, D. Morin, B.
Onténiente, Specific caspase pathways are activated in the two stages of cerebral
infarction, J. Neurosci. 21 (2001) 7127–7134.
[8] J. Yuan, B.A. Yanker, Apoptosis in the nervous system, Nature 407 (2000)
802–809.
[36] J. Chai, Q. Wu, E. Shiozaki, S.M. Srinivasula, E.S. Alnemri, Y. Shi, Crystal structure of
procaspase-7 zymogen: mechanism of activation and substrate binding, Cell 107
(2001) 399–407.
[37] S.J. Riedl, P. Fuentes-Prior, M. Renatus, N. Kairies, S. Krapp, R. Huber, G.S. Salvesen,
W. Bode, Structural basis for the activation of human procaspase-7, Proc. Natl
Acad. Sci. USA 98 (2001) 14790–14795.
[38] W. Watt, K.A. Koeplinger, A.M. Mildner, R.L. Heinrikson, A.G. Tomasselli, K.D.
Watenpaugh, The atomic resolution structure of caspase-8, a key activator of
apoptosis, Structure 7 (1999) 1135–1143.
[39] H. Blanchard, L. Kodandapani, P.R.E. Mittl, S. Di Marco, J.K. Krebs, J.C. Wu, K.J.
Tomaselli, M.G. Grütter, The three dimensional structure of caspase-8: an initiator
enzyme in apoptosis, Structure 7 (1999) 1125–1133.
[40] H. Blanchard, M. Donepudi, M. Tschopp, L. Kodandapani, J.C. Wu, M.G. Grutter,
Caspase -8 specificity probed at subsite S4: crystal structure of the caspase-8–Z-
DEVD-cho complex, J. Mol. Biol. 302 (2000) 9–16.
[41] M. Renatus, H.R. Stennicke, F.L. Scott, R.C. Liddington, G.S. Salvesen, Dimer
formation drives the activation of the cell death protease caspase-9, Proc. Natl
Acad. Sci. USA 98 (2001) 14250–14255.
[42] A.S. Ripka, D.H. Rich, Peptidomimetic design, Curr. Opin. Chem. Biol. 2 (1998) 441–452.
[43] A. Albeck, S. Kliper, Mechanism of cysteine protease inactivation by peptidyl
epoxides, Biochem. J. 322 (1997) 879–884.
[44] D. Bromme, J.L. Klaus, K. Okamoto, D. Rasnick, J.T. Palmer, Peptidyl vinyl
sulphones: a new class of potent and selective cysteine protease inhibitors-
S2P2 specificity of human cathepsin O2 in comparison with cathepsins S and L,
Biochem. J. 315 (1996) 85–89.
[9] G. Tezel, M. Wax, Inhibition of caspase activity in retinal cell apoptosis induced by
various stimuli in vitro, Invest. Ophthalmol. Vis. Sci. 40 (1999) 2660–2667.
[10] J. Narula, P. Panday, E. Arbstini, N. Haider, N. Narula, F.D. Kolodgie, B. Dal Bello, M.J.
Semigran, A. Bielsa-Masdeu, G.W. Dec, S. Israels, M. Ballester, R. Virmani, S.
Saxena, S. Kharbanda, Apoptosis in heart failure: release of cytochrome c from
mitochondria and activation of caspase-3 in human cardiomyopathy, Proc. Natl
Acad. Sci. USA 96 (1999) 8144–8149.
[11] T.L. Vanden, Y. Qin, K. Wojcik, C.Q. Li, Z.H. Shao, T. Anderson, L.B. Becker, K.J.
Hamann, Reperfusion and not simulated ischemia initiates apoptosis injury in
chick cardiomyocytes, Am. J. Physiol. Heart Circ. Physiol. 284 (2003) H141–H150.
[12] R.S. Hotchkiss, D.W. Nicholson, Apoptosis and caspases regulate death and
inflammation in sepsis, Nat. Rev. Immunol. 6 (2006) 813–822.
[13] H.A. Kim, F.J. Blanco, Cell death and apoptosis in ostearthritic cartilage, Curr. Drug
Targets 8 (2007) 333–345.
[14] C.A. Dinarello, Therapeutic strategies to reduce IL-1 activity in treating local and
systemic inflammation, Curr. Opin. Pharmacol. 4 (2004) 378–385.
[15] S. Nakae, Y. Komiyama, H. Yokoyama, A. Nambu, M. Umeda, M. Iwase, I. Homma,
K. Sudo, R. Horai, M. Asano, Y. Iwakura, IL-1 is required for allergen-specific Th2
cell activation and the development of airway hypersensitivity response, Int.
Immunol. 15 (2003) 483–490.
[16] K. Takeda, J. Stagg, H. Yagita, K. Okumura, M.J. Smyth, Targeting death-inducing
receptors in cancer therapy, Oncogene 26 (2007) 3745–3757.
[17] S. Cornelius, K. Kersse, N. Festjens, M. Lamkanfi, P. Vandenabeele, Inflammatory
caspases: targets for novel therapies, Curr. Pharm. Des. 13 (2007) 367–385.
[18] S.D. Linton, Caspase inhibitors: a pharmaceutical industry perspective, Curr. Top.
Med. Chem. 5 (2005) 1697–1717.
[45] H.-O. Kim, M. Kahn,
A merger of rational drug design and combinatorial
chemistry: development and application of peptide secondary structure
mimetics, Comb. Chem. High Throughput Screen. 3 (2000) 167–183.
[46] P.D. Boatman, C.O. Ogbu, M. Eguchi, H.-O. Kim, H. Nakanishi, B. Cao, J.P. Shea,
M. Kahn, Secondary structure peptide mimetics: design, synthesis, and
evaluation of β-strand mimetic thrombin inhibitors, J. Med. Chem. 42 (1999)
1367–1375.
[47] R. St. Charles, J.H. Matthews, E. Zhang, A. Tulinsky, Bound structures of novel P3–P′
1
β-strand mimetic inhibitors of thrombin, J. Med. Chem. 42 (1999) 1376–1383.
[48] K.B. Rank, A.N. Mildner, W.J. Leone, K.A. Koeplinger, K.C. Chou, A.G. Tomasselli, R.L.
Heinrikson, S.K. Sharma, [W206R]-Procaspase-3; an inactivatable substrate for
caspase-8, Protein Expr. Purif. 22 (2001) 258–266.
[49] K.A. Koeplinger, A.M. Mildner, J.W. Leone, J.S. Wheeler, R.L. Heinrikson, A.G.
Tomasselli, Caspase-8: an efficient method for autoactivation of recombinant
procaspase-8 by matrix absorption and characterization of the active enzyme,
Protein Expr. Purif. 18 (2000) 378–387.
[19] T. O'Brien, D. Lee, Prospects for caspase inhibitors, Mini-Rev. Med. Chem. 4 (2004)
153–165.
[20] N.A. Thornberry, Y. Lazebnik, Caspases: enemies within, Science 281 (1998)
1312–1316.
[21] M.O. Hengartner, The biochemistry of apoptosis, Nature 407 (2000) 770–776.