LETTER
Rhodium-Catalyzed Asymmetric Hydrosilylation of Ketones
1461
Electron-donating-substituted acetophenone derivatives controlling the net electronic environment at the catalytic
such as 3-methoxyacetophenone 10 gave 11 in 94% ee center. Synthesis and studies of similar ligands and their
whilst electron-withdrawing-substituted acetophenone catalytic activity are in progress and will be communicat-
derivatives such as 3-trifluoromethylacetophenone (12) ed in due course.
furnished 13 in 99% ee. 4-Methoxyacetophenone 14 also
gave 15 in high ee (98%) as shown in Table 2. Similarly
screening other substrates such as 2-phenylethyl methyl
Acknowledgment
A. Ghoshal is grateful to Syngene for providing the necessary faci-
lities to carry out this work. We acknowledge Dr. Goutam Das,
COO, Syngene for his valuable suggestions and kind support. We
also acknowledge K. Kandasamy and D. Anand Raj for their com-
ments during the preparation of the manuscript.
ketone (16) and propiophenone (18) gave 17 and 19, re-
spectively, with >87% ee. Subsequent screening on 1-te-
tralone (20) provided 21 with 98% ee (Table 2).10 All the
substrates studied above using the ligands 5 gave the alco-
hols with S-configuration.
Table 2 Results of Asymmetric Hydrosilylation of Ketones Em-
ploying the Catalyst 6d
References and Notes
(1) (a) Kagan, H. B. Asymmetric Synthesis, Vol. 5; Academic
Press: New York, 1985, 1–39. (b) Brunner, H. Topics in
Stereochemistry, Vol. 18; Interscience: New York, 1988,
129–247.
Entry Substrate
Product
Yield (%)ee (%)
O
HO
H
(2) (a) Noyori, R.; Ohkuma, T.; Kitamura, M.; Takaya, H.;
Sayo, N.; Kumobayashi, H.; Akutagawa, S. J. Am. Chem.
Soc. 1987, 109, 5856. (b) Corey, E. J.; Bakshi, R. K.;
Shibata, S.; Chen, C.-P.; Singh, V. K. J. Am. Chem. Soc.
1987, 109, 7925.
(3) Bolm, C. Angew. Chem., Int. Ed. Engl. 1991, 30, 542.
(4) (a) Nishiyama, H.; Sakaguchi, H.; Nakamura, T.; Horihata,
M.; Kondo, M.; Itoh, K. Organometallics 1989, 8, 846.
(b) Nishiyama, H.; Kondo, M.; Nakamura, T.; Itoh, K.
Organometallics 1991, 10, 500. (c) Nishiyama, H.;
Yamaguchi, S.; Kondo, M.; Itoh, K. J. Org. Chem. 1992, 57,
4306. (d) Nishiyama, H.; Park, S.-B.; Itoh, K. Tetrahedron:
Asymmetry 1992, 3, 1029. (e) Nishiyama, H.; Yamaguchi,
S.; Park, S.-B.; Itoh, K. Tetrahedron: Asymmetry 1993, 4,
143.
(5) (a) Peyronal, J. F.; Kagan, H. B. Nouv. J. Chim. 1978, 2,
211. (b) Ojima, I.; Kogure, T.; Kumagai, M. J. Org. Chem.
1977, 42, 1671. (c) Brunner, H.; Obermann, U. Chem. Ber.
1989, 122, 499. (d) Brunner, H.; Brandl, P. Tetrahedron:
Asymmetry 1991, 2, 919. (e) Gladiali, S.; Pinna, L.; Delogu,
D. G.; Graf, E.; Brunner, H. Tetrahedron: Asymmetry 1990,
1, 937.
(6) Jacobsen, E. N.; Zhang, W.; Güler, M. L. J. Am. Chem. Soc.
1991, 113, 6703.
(7) (a) Van Staveren, C. J.; Aarts, V. M. L. J.; Grootenhuis,
P. D. J.; Droppers, W. J. H.; Van Eerden, J.; Harkema, S.;
Reinhoudt, D. N. J. Am. Chem. Soc. 1988, 110, 8134.
(b) Hong, F.; Hollenback, D.; Singer, J. W.; Klein, P.
Bioorg. Med. Chem. Lett. 2005, 15, 4703.
(8) (a) Belanger, D. B.; Siddiqui, M. A.; Curran, P. J.; Hamman,
B.; Zhao, L.; Reddy, P. A. P.; Tadikonda, P. K.; Shipps, G.
W. Jr.; Mansoor, U. F. WO 082487 A2, 2008. (b) Oh-e, T.;
Miyaura, N.; Suzuki, A. J. Org. Chem. 1993, 58, 2201.
(c) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
(d) Stanforth, S. P. Tetrahedron 1998, 54, 263. (e) Sutton,
A. E.; Clardy, J. Tetrahedron Lett. 2001, 42, 547.
(f) Hovinen, J.; Mukkala, V. M.; Hakala, H.; Peu-Rahlati, J.
WO 058877 A1, 2005.
1
92
94
OMe
11
OMe
10
O
HO
H
2
3
89
85
99
98
CF3
CF3
13
12
O
HO
H
MeO
MeO
15
14
O
HO
H
4
5
93
94
87
95
17
16
18
20
O
O
HO
H
19
HO
H
6
94
98
21
In conclusion, we have envisaged and synthesized a new
class of ligands employing palladium-catalyzed Suzuki
coupling and base-mediated cyclization as pivotal steps.
The ligands were used to synthesize the rhodium catalysts
which were screened for asymmetric hydrosilylation of
ketones. Among these, the catalyst with the electron-neu-
tral ethyl substituent was proved to furnish excellent enan-
tioselectivity with good to high yields and hence it is clear
that the remote substituent has significant influence on
(9) The overall yield of the ligand 5a is 45%. Similarly the
overall yields for ligands 5b,c,d,e,f are 39%, 40%, 38%,
33%, and 28%, respectively.
(10) All compounds were characterized based on 1H NMR and
mass spectrometric analysis. Enantiomeric excesses of
alcohols were determined by chiral HPLC using either
Chiracel or Chiralpak OD-H columns.
(11) 4-(4-Ethylphenyl)-2,6-bis(4-isopropyl-4,5-dihydro-
oxazol-2-yl)pyridine (5d)
Synlett 2010, No. 10, 1459–1462 © Thieme Stuttgart · New York