1238
W. Herath et al.
255.1109 (Calcd for C16H14O3 þ H: 255.10219). Identification of 9 was by comparison with
published data (Lee et al., 2007).
4.7. Microbial transformation of 5-methoxyflavone (8) by A. alliaceus (ATCC 10060)
40-Hydroxy-5-methoxyflavone (10) formed was purified as a white solid by column
chromatography (89.9 mg, 71.92% yield). Rf 0.31 [MeOH : CH2Cl2 (1 : 16)]; UV ꢂmax
(MeOH) nm (log "): 329 (4.42), 265(4.25), 219 (4.38), 202 (4.45); IR ꢃmax(CHCl3) cmꢀ1
:
3428, 2988, 1594, 1580, 1475, 1395,1285, 1131, 834; HR-ESI-MS [M þ H]þ: (m/z) 269.0811
(Calcd for C16H12O4 þ H: 269.08146).
Acknowledgements
The authors thank Mr. Frank Wiggers for assistance in obtaining 2D-NMR spectra and Dr Bharathi
Avula for conducting HRESIMS analysis. This work was supported, in part, by the United States
Department of Agriculture, Agricultural Research Specific Cooperative Agreement No. 58-6408-2-
00009.
References
Abourashed, E.A., & Khan, I.A. (2000). Microbial transformation of kawain and methysticin.
Chemical & Pharmaceutical Bulletin, 48, 1996–1998.
Davis, P.J. (1987). Microbial transformations: Models of mammalian metabolism and catalysts in
synthetic medicinal chemistry. In S.S. Lamba & C.A. Walker (Eds.), Antibiotics and microbial
transformations (pp. 47–70). Florida: CRC Press.
Herath, W., Mikell, J.R., Hale, A.L., Ferreira, D., & Khan, I.A. (2008). Microbial metabolism part
9. Structure and antioxidant significance of the metabolites of 5,7-dihydroxyflavone (chrysin),
and 5- and 6-hydroxyflavones. Chemical & Pharmaceutical Bulletin, 56, 418–422.
Herath, W.H.M.W., Ferreira, D., & Khan, I.A. (2003). Microbial transformation of xanthohumol.
Phytochemistry, 62, 673–677.
Jurgens, T.M., Hufford, C.D., & Clark, A.M. (1992). The metabolism of muzigadial by
microorganisms. Xenobiotica, 22, 569–577.
Lee, J.I., Jung, M.G., & Jung, H.J. (2007). A novel synthesis of flavanones from 2-hydroxybenzoic
acids. Bulletin of the Korean Chemical Society, 28, 859–862.
Menichincheri, M., Ballinari, D., Bargiotti, A., Bonomini, L., Ceccarelli, W., D’Alessio, D., et al.
(2004). Catecholic flavonoids acting as telomerase inhibitors. Journal of Medicinal Chemistry,
47, 6466–6475.
Middleton Jr., E., Kandaswami, C., & Theoharides, T.C. (2000). The effects of plant flavonoids on
mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacology
Reviews, 52, 673–751.
Nikolic, N., & van Breemen, R.B. (2004). New metabolic pathways for flavanones catalyzed by rat
liver microsomes. Drug Metabolism and Disposition, 32, 387–397.
Ohtani, H., Ikegawa, T., Honda, Y., Kohyama, N., Morimoto, S., Shoyama, Y., et al. (2007).
Effects of various methoxyflavones on vincristine uptake and multidrug resistance to
vincristine in P-gp-overexpressing K562/ADM cells. Pharmaceutical Research, 24,
1936–1943.
Takano, K., Tabata, Y., Kitao, Y., Murakami, R., Suzuki, H., Yamada, M., et al. (2007).
Methoxyflavones protect cells against endoplasmic reticulum stress and neurotoxin. American
Journal of Physiology – Cell Physiology, 292, C353–C361.