4316
H. M. Meshram et al. / Tetrahedron Letters 51 (2010) 4313–4316
Kumar, D. A.; Prasad, B. R. V.; Goud, P. R. Helv. Chemi. Acta. 2010, 93, 648; (d)
Meshram, H. M.; Prasad, B. R. V.; Kumar, D. A. Tetrahedron Lett. In press.
17. (a) Varma, R. S.; Saini, R. K.; Meshram, H. M. Tetrahedron Lett. 1997, 38, 6525;
(b) Meshram, H. M.; Srinivas, D.; Yadav, J. S. Tetrahedron Lett. 1997, 38, 8743;
(c) Meshram, H. M.; Reddy, G. S.; Yadav, J. S. Tetrahedron Lett. 1997, 38, 891; (d)
Meshram, H. M.; Reddy, G. S.; Reddy, M. M.; Yadav, J. S. Tetrahedron Lett. 1998,
39, 4103; (e) Meshram, H. M.; Reddy, B. C.; Goud, P. R. Synth. Commun. 2009, 39,
2297; (f) Meshram, H. M.; Kumar, G. S.; Ramesh, P.; Reddy, B. C. Tetrahedron
Lett. 2010, 51, 2559.
uted to the electron-donating nature of methyl group which may
favour to increase the nucleophilic character of amine group. It
was noticed that electron-withdrawing substituents suppress the
reaction (entries 4, 5, 11, 12, 20 and 21) but favour the formation
of only one desired product. In addition, the functionalities like es-
ter remain unaffected. We believe that the procedure is simple,
convenient and does not require any aqueous work-up, thereby
avoiding the generation of waste, and may contribute to the area
of green chemistry.
18. (a) Boon, J. A.; Levinsky, J. A.; Pflug, J. L.; Wilkes, J. S. J. Org. Chem. 1986, 51, 480;
(b) Sheldon, R. Chem. Commun. 2001, 2399; (c) Harjani, J. R.; Nara, S. J.;
Salunkhe, M. M. Tetrahedron Lett. 2002, 43, 1127.
In summary, the ionic liquid was shown to be an effective and
useful alternative reaction medium for the preparation of 2-car-
boxylate quinoxaline derivatives. The present procedure offers sev-
eral unique advantages such as enhanced yields, shorter reaction
times, operational simplicity, mild reaction conditions, ease of iso-
lation of products and a greener aspect by avoiding the need for a
catalyst.
19. General procedure: A mixture of 1,2-phenylenediamine (1 mmol) and a-halo-b-
ketoesters (1.1 mmol) in [bmim]BF4 (2 mL) was stirred at rt for the appropriate
time (see Table 1). After completion of the reaction, as indicated by TLC, the
reaction mixture was extracted with diethyl ether (3 Â 10 mL). The combined
organic extracts were concentrated under vacuum and the resulting product
was directly charged on a silica gel (Merck, 60–120 mesh) column and eluted
with a mixture of ethyl acetate/n-hexane (1:9) to afford the corresponding
pure product. The residual ionic liquid was dried under vacuum and reused. All
the products were prepared by following the same procedure and
characterized by IR, mass and NMR.20
20. Spectral data for new compounds:
Acknowledgements
Compound 1b: Semi solid. 1H NMR (300 MHz, CDCl3): d 1.50 (3H, t, J = 6.83 Hz),
2.62 (3H, s), 2.90 (3H, s), 4.51 (2H, q, J = 6.83 Hz), 7.54 (1H, d, J = 8.78 Hz), 7.78
(1H, s), 8.02 (1H, d, J = 8.78 Hz). 13C NMR (75 MHz, CDCl3): d 14.1, 21.2, 23.1,
70.0, 127.7, 129.0, 136.6, 142.1, 148.4, 154.0, 161.0. MS (ESI) m/z 243 (M+Na),
P.R., G.S.K. and B.C.K.R. thank CSIR-UGC for the award of a fel-
lowship and Dr. J. S. Yadav, Director IICT, for his support and
encouragement.
231 (M+1); IR (KBr)
m = 2924, 1724, 1669, 1629, 1451, 1409, 1259, 1083,
804 cmÀ1. Compound 1d: Solid. Mp 73–74 °C; 1H NMR (300 MHz, CDCl3): d
1.52 (3H, t, J = 7.17 Hz), 2.98 (3H, s), 4.55 (2H, q, J = 7.17 Hz), 8.16 (1H, d,
J = 9.25 Hz), 8.60 (1H, dd, J = 2.45 Hz, J = 6.61 Hz), 9.07 (1H, d, J = 2.45 Hz). 13C
NMR (75 MHz, CDCl3): d 14.0, 23.1, 60.8, 122.4, 122.7, 129.3, 141.5, 143.2,
152.6, 158.6, 161. MS (ESI) m/z 284 (M+Na), 262 (M+1). IR (KBr): 3098, 2921,
2849, 1746, 1576, 1535, 1350, 1300, 1153, 1114, 1030, 906. Compound 1e:
Solid. Mp 57–58 °C. 1H NMR (300 MHz, CDCl3): d 1.51 (3H, t, J = 7.28 Hz), 2.98
(3H, s), 4.05 (3H, s), 4.55 (2H, q, J = 7.28 Hz), 8.07 (1H, d, J = 9.37 Hz), 8.40 (1H,
d, J = 9.37 Hz), 8.87 (1H, s). 13C NMR (75 MHz, CDCl3): d 14.0, 23.1, 51.6, 70.0,
127.5, 130.2, 133.2, 141.1, 143.1, 150.9, 156.4, 161.0, 166.0. MS (ESI) m/z 297
References and notes
1. (a) Sakata, G.; Makino, K.; Kurasawa, Y. Heterocycles 1988, 27, 2481; (b) Sato, N..
In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees, C. W., Scriven,
E. F., Eds.; Elsevier Science Ltd: Oxford, 1996; Vol. 6,. Chapter 6.03 (c) Seitz, L.
E.; Suling, W. J.; Reynolds, R. C. J. Med. Chem. 2002, 45, 5604; (d) Gazit, A.; App,
H.; McMahon, G.; Chen, J.; Levitzki, A.; Bohmer, F. D. J. Med. Chem. 1996, 39,
2170.
2. (a) Katoh, A.; Yoshida, T.; Ohkanda, J. Heterocycles 2000, 52, 911; (b) Thomas, K.
R. J.; Velusamy, M.; Lin, J. T.; Chuen, C.-H.; Tao, Y.-T. Chem. Mater. 2005, 17,
1860; (c) Dailey, S.; Feast, W. J.; Peace, R. J.; Sage, I. C.; Till, S.; Wood, E. L. J.
Mater. Chem. 2001, 11, 2238; (d) Sascha, O.; Ru diger, F. Synlett 2004, 1509; (e)
Crossley, M. J.; Johnston, L. A. Chem. Commun. 2002, 1122.
3. Brown, J. D.. In Taylor, C. E., Wipf, P., Eds.; The Chemistry of Heterocyclic
Compounds, Quinoxalines: Supplements II; John Wiley and Sons: New Jersey,
2004; (a) Bhosale, R. S.; Sarda, S. R.; Andhapure, S. S.; Jadhav, W. N.; Bhusare, S.
R.; Pawar, R. P. Tetrahedron Lett. 2005, 46, 7183; (b) More, S. V.; Sastry, M. N. V.;
Yao, C.-F. Green Chem. 2006, 8, 91; (c) More, S. V.; Sastry, M. N. V.; Wang, C. C.;
Yao, C.-F. Tetrahedron Lett. 2005, 46, 6345; (d) Guo, W. X.; Jin, H. L.; Chen, J. X.;
Chen, F.; Ding, J. C.; Wu, H. Y. J. Braz. Chem. Soc. 2009, 20, 1674; (e) Beheshtiha,
Y. S.; Heravi, M. M.; Saeedi, M.; Karimi, N.; Zakeri, M.; Hossieni, N. T. Synth.
Commun. 2010, 40, 1216; (f) Potewar, T. M.; Ingale, S. A.; Srinivasan, K. V. Synth.
Commun. 2008, 38, 3601; (g) Fang, D.; Gong, K.; Fei, Z.; Zhou, X.; Liu, Z. Catal.
Commun. 2008, 9, 317.
4. Aparicio, D.; Attanasi, O. A.; Filippone, P.; Ignacio, R.; Lillini, S.; Mantellini, F.;
Palacios, F.; de lossantos, J. M. J. Org. Chem. 2006, 71, 5897.
5. (a) Raw, S. A.; Wilfred, C. D.; Taylor, R. J. K. Org. Biomol. Chem. 2004, 2, 788; (b)
Kim, S. Y.; Park, K. H.; Chung, Y. K. Chem. Commun. 2005, 1321; (c) Robinson, R.
S.; Taylor, R. J. K. Synlett 2005, 1003.
6. Singh, S. K.; Gupta, P.; Duggineni, S.; Kundu, B. Synlett 2003, 2147.
7. Das, B.; Venkateswarlu, K.; Suneel, K.; Majhi, A. Tetrahedron Lett. 2007, 48, 5371.
8. Madhav, B.; Narayana Murthy, S.; Prakash Reddy, V.; Rama Rao, K.; Nageswar,
Y. V. D. Tetrahedron Lett. 2009, 50, 6025.
9. Min, T.; Michael, D. J.; Christine, T.; Dan, K.; James, N. L.; Tim, K.; Shelley, A.;
Jarek, K.; Dilip, B.; Larry, T.; John, M.; Ulla, S.; Janos, T. K.; Anker, S. J.; Preben, H.
O.; Johannes, C. D. J.; Peter, M.; Carsten, B.; Ingrid, P.; Lotte, B. K. Bio. Org. Med.
Chem. Lett. 2007, 17, 5472.
(M+Na), 275 (M+1); IR (KBr)
m = 2925, 2854, 1719, 1617, 1553, 1445, 1318,
1236, 1086, 1020, 857, 758. Compound 3b: Semi solid. 1H NMR (300 MHz,
CDCl3): d 1.48 (3H, t, J = 6.83 Hz), 2.68 (3H, s), 4.53 (2H, q, J = 6.83 Hz), 7.78 (1H,
t, J = 7.80 Hz), 8.01 (1H, d, J = 8.78 Hz), 8.13 (1H, d, J = 8.78 Hz). 13C NMR
(75 MHz, CDCl3): d 14.1, 21.2, 61.0, 119.4, 129.3, 129.5, 138.2, 141.1, 142.0,
142.3, 161.0. MS (ESI) m/z 307 (M+Na), 285 (M+1); IR (KBr)
m = 2924, 2855,
1745, 1625, 1419, 1443, 1277, 1192, 1151, 1034, 827, 599 cmÀ1. Compound 3c:
Solid. Mp 66–68 °C. 1H NMR (300 MHz, CDCl3): d 1.49 (3H, t, J = 7.17 Hz), 2.57
(6H, s), 4.52 (2H, q, J = 7.17 Hz), 7.98 (2H, s). 13C NMR (75 MHz, CDCl3): d 14.0,
18.8, 60.9, 119.8, 129.2, 129.7, 140.3, 140.9, 151.1, 151.8, 161.0. MS (ESI) m/z
299 (M+1); IR (KBr)
m = 3075, 2926, 2855, 1737, 1628, 1594, 1418, 1336, 1203,
1083, 806, 616. Compound 3d: Semi solid. 1H NMR (300 MHz, CDCl3): d 1.50
(3H, t, J = 7.28 Hz), 4.57 (2H, q, J = 7.28 Hz), 8.44 (1H, d, J = 8.32 Hz), 8.72 (1H, d,
J = 8.32 Hz), 9.13 (1H, s). 13C NMR (75 MHz, CDCl3): d 14.0, 70.0, 119.7, 124.4,
125.8, 141.9, 144.9, 145.1, 146.5, 146.7, 160.0. MS (ESI) m/z 338 (M+Na). IR
(KBr): 2972, 2934, 1734, 1619, 1532, 1467, 1352 cmÀ1. Compound 3e: Semi
solid. 1H NMR (300 MHz, CDCl3): d 1.49 (2H, t, J = 6.83 Hz), 4.04 (3H, s), 4.55
(2H, q, J = 6.83 Hz), 8.29 (1H, t, J = 7.80 Hz), 8.52 (1H, t, J = 7.80 Hz), 8.92 (1H, d,
J = 8.78 Hz). 13C NMR (75 MHz, CDCl3): d 14.1, 51.5, 60.8, 119.8, 131.0, 133.6,
135.1, 142.0, 144.4, 145.2, 161.0, 165.9;. MS (ESI) m/z 351 (M+Na), 329 (M+1).
IR (KBr)
m = 2926, 2853, 1737, 1628, 1594, 1550, 1418, 1201, 1054, 806,
616 cmÀ1. Compound 6b: Semi solid. 1H NMR (300 MHz, CDCl3): d 1.40 (6H, d,
J = 6.79 Hz), 1.49 (3H, t, J = 7.17 Hz), 2.61 (3H, s), 3.65 (1H, m), 4.50 (2H, q,
J = 7.17 Hz), 7.40 (1H, dd, J = 1.70, J = 6.79 Hz), 7.85 (1H, d, J = 8.49 Hz), 8.0 (1H,
d, J = 8.49 Hz). 13C NMR (75 MHz, CDCl3): d 14.1, 21.3, 22.2, 32.4, 60.9, 127.87,
128.7, 136.6, 142.0, 148.4, 152.4, 161.2; MS (ESI) m/z 281 (M+Na), 259 (M+1).
IR (KBr)
m = 2972, 2929, 1731, 1621, 1552, 1322, 1229, 1182, 1101, 1057, 828.
Compound 6c: Solid. mp 67–69 °C. 1H NMR (300 MHz, CDCl3): d 1.30 (6H, d,
J = 6.24 Hz), 1.45 (3H, t, J = 7.28 Hz), 2.42 (3H, s), 2.44 (3H, s), 3.6 (1H, m), 4.44
(2H, q, J = 7.28 Hz), 7.77 (1H, s), 7.74 (1H, s). 13C NMR (75 MHz, CDCl3): d 14.0,
18.8, 22.1, 32.3, 60.9, 127.5, 129.1, 137.1, 141.9, 147.6, 150.0, 161.0. MS (ESI)
10. Attanasi, O. A.; De Crescentini, L.; Filippone, P.; Mantellini, F.; Santeusanio, S.
Helv. Chem. Acta. 2001, 84, 2379.
11. Attanasi, O. A.; De Crescentini, L.; Filippone, P.; Mantellini, F.; Santeusanio, S.
Synlett 2003, 1183.
12. (a) Welton, T. Chem. Rev. 1999, 99, 2071; (b) Wasserscheid, P.; Keim, W. Angew.
Chem., Int. Ed. 2000, 39, 3773; (c) Wilkes, J. S. Green Chem. 2002, 4, 73; (d) Zerth,
H. M.; Leonard, N. M.; Mohan, R. S. Org. Lett. 2003, 5, 55; (e) Kumar, A.; Pawar, S.
S. J. Org. Chem. 2004, 69, 1419; (f) Gu, D.-G.; Ji, S.-J.; Jiang, Z.-Q.; Zhou, M.-F.;
Loh, T.-P. Synlett 2005, 959.
13. Yadav, J. S.; Reddy, B. V. S.; Premalatha, K. Adv. Synth. Catal. 2003, 345, 948.
14. Khurana, J. M.; Magoo, D. Tetrahedron Lett. 2009, 50, 7300.
15. Cui, D. M.; Ke, Y. K.; Zhuang, D. W.; Wang, Q.; Zhang, C. Tetrahedron Lett. 2010,
52, 980.
m/z 295 (M+Na), 273 (M+1). IR (KBr):
m = 2970, 2931, 1732, 1552, 1459, 1320,
1230, 1182, 1103, 1055, 827. Compound 6d: Semi solid. 1H NMR (300 MHz,
CDCl3): d 1.42 (6H, d, J = 6.79 Hz), 1.51 (3H, t, J = 6.79 Hz), 3.68 (1H, m), 4.54
(2H, q, J = 6.79 Hz), 8.20 (1H, d, J = 9.06 Hz), 8.55 (1H, dd, J = 9.06 Hz,
J = 11.33 Hz), 9.1 (1H, s). 13C NMR (75 MHz, CDCl3): d 14.1, 22.2, 32.2, 60.9,
122.4, 422.9, 141.5, 142.9, 152.6, 155.8, 161.0. MS (ESI) m/z 312 (M+Na), 290
(M+1). IR (KBr)
m = 2976, 2932, 2874, 1736, 1532, 1467, 1350, 1243, 1109,
1058, 849. Compound 6e: Semi solid. 1H NMR (300 MHz, CDCl3): d 1.42 (2H, d,
J = 7.28 Hz), 1.50 (3H, t, J = 7.28 Hz), 3.67 (1H, m), 4.0 (3H, s), 4.57 (2H, q,
J = 7.28 Hz), 8.10 (1H, d, J = 8.32 Hz), 8.37 (1H, d, J = 8.32 Hz), 8.82 (1H, s). 13C
NMR (75 MHz, CDCl3): d 14.0, 22.1, 32.3, 51.8, 60.9, 127.5, 130.4, 131.9, 133.4,
141.1, 143.1, 151.8, 154.5, 161.0, 165.9. MS (ESI) m/z 325 (M+Na). IR (KBr)
16. (a) Meshram, H. M.; Reddy, P. N.; Vishnu, P.; Sadhashiv, K.; Yadav, J. S.
Tetrahedron Lett. 2005, 46, 6607; (b) Meshram, H. M.; Reddy, P. N.; Vishnu, P.;
Sadhashiv, K.; Yadav, J. S. Tetrahedron Lett. 2006, 47, 991; (c) Meshram, H. M.;
m
= 2935, 2855, 1759, 1616, 1557, 1444, 1319, 1226, 1078, 1021, 850, 755.