[PtII(5pb)Cl] (5dpb = 2,6-bis(5-methyl-2-pyridyl)benzene) at
570 nm was shifted to 670 nm on grinding accompanied by the
formation of excimer.3 Two possibilities can be considered for
the unique blue shift of the emission of 1b. First, the inter-
molecular p–p interaction involving phenylene rings may
cause perturbation of energy level for p* orbitals to form
specific aggregates. It has been reported that columnar stacks
of a tetraphenylpyrene derivative are responsible for blue
emission of the solid and that the disruption of the columnar
structure by pressure leads to the formation of the green
emissive solid with the poorly ordered molecular packing.2a
However, no remarkable difference between diffuse reflectance
spectra of 1g, 1b and 2 was observed (Fig. S9, ESIw), so it may
not be applicable to this case. Alternatively, it is possible that
the intermolecular interaction between adjacent phenylene
rings may prevent some distortion of the ligands on excitation,
which leads to a small Stokes shift. In this case, the excitation
energy of 1g must be similar to that of 1b. Actually, excitation
maximum of 1g is similar to that of 1b (Fig. S10, ESIw).
Considering from these results, we propose that mechanical
grinding leads to a disruption of intermolecular interaction
between phenylene rings of adjacent molecules in 1g solid to
give green emission. 1g may be in the metastable amorphous
phase, and either heating or recrystallization transforms 1g
into more stable 1b in the mechanochromic system.
Notes and references
1 (a) M. K. Beyer and H. Clausen-Schaumann, Chem. Rev., 2005,
105, 2921–2948; (b) H. Bouas-Laurent and H. Durr, Pure Appl.
Chem., 2001, 73, 639–665.
2 (a) Y. Sagara, T. Mutai, I. Yoshikawa and K. Araki, J. Am. Chem.
Soc., 2007, 129, 1520–1521; (b) J. Mizuguchi, N. Tanifuji and
K. Kobayashi, J. Phys. Chem. B, 2003, 107, 12635–12638;
(c) P. L. Gentili, M. Nocchetti, C. Miliani and G. Favaro,
New J. Chem., 2004, 28, 379–386; (d) K. Ariga, T. Nakanishi,
Y. Terasaka, H. Tsuji, D. Sakai and J. Kikuchi, Langmuir, 2005,
21, 976–981.
¨
3 T. Abe, T. Itakura, N. Ikeda and K. Shinozaki, Dalton Trans.,
2009, 711–715.
4 S. Mizukami, H. Houjou, K. Sugaya, E. Koyama, H. Tokuhisa,
T. Sasaki and M. Kanesato, Chem. Mater., 2005, 17, 50–56.
5 (a) A. L. Balch, Angew. Chem., Int. Ed., 2009, 48, 2641–2644;
(b) H. Ito, S. Tomihisa, O. Naoya, N. Kitamura, S. Ishizaka,
Y. Hinatsu, M. Wakeshima, M. Kato, K. Tsuge and
M. Sawamura, J. Am. Chem. Soc., 2008, 130, 10044–10045;
(c) J. Schneider, Y. A. Lee, J. Perez, W. W. Brennessel,
C. Flaschenriem and R. J. Eisenberg, Inorg. Chem., 2008, 47,
957–968; (d) Y. A. Lee and R. J. Eisenberg, J. Am. Chem. Soc.,
2003, 125, 7778–7779; (e) Z. Assefa, M. A. Omary,
B. G. McBurnett, A. A. Mohamed, H. H. Patterson,
R. J. Staples and J. P. Fackler, Inorg. Chem., 2002, 41, 6274–6280.
6 Pd(0) and Pt(0) complexes: (a) T. Tsubomura, Y. Ito, S. Inoue,
Y. Tanaka, K. Matsumoto and T. Tsukuda, Inorg. Chem., 2008,
47, 481–486; (b) Z. A. Siddique, T. Ohno, K. Nozaki and
T.
Tsubomura,
Inorg.
Chem.,
2004,
43,
663–673;
(c) T. Tsubomura, M. Abe, M. Tarutani, H. Yamada and
T. Tsukuda, Bull. Chem. Soc. Jpn., 2003, 76, 2151–2152;
(d) H. Tominaga, K. Sakai and T. Tsubomura, J. Chem. Soc.,
Chem. Commun., 1995, 2273–2274.
7 Cu(I) complexes: (a) T. Tsukuda, C. Nishigata, K. Arai and
T. Tsubomura, Polyhedron, 2009, 28, 7–12; (b) K. Saito,
T. Tsukuda and T. Tsubomura, Bull. Chem. Soc. Jpn., 2006, 79,
437–441; (c) K. Saito, T. Arai, T. Tsukuda and T. Tsubomura,
Dalton Trans., 2006, 4444–4448; (d) T. Tsukuda, A. Nakamura,
T. Arai and T. Tsubomura, Bull. Chem. Soc. Jpn., 2006, 79,
288–290; (e) T. Tsubomura, N. Takahashi, K. Saito and
T. Tsukuda, Chem. Lett., 2004, 678–679.
Most of the metal complexes showing reversible luminescent
mechanochromism reported so far are Au(I) multinuclear
complexes, which results from modulation of the aurophilic
interactions. The Ag–dppbz system reported herein, which
apparently requires different mechanism for the mechano-
chromism, should provide new mechanistic insights into
mechanochromism. Molecular orbital calculation for inter-
molecular interaction in the Ag–dppbz system may give useful
information on the mechanism of the mechanochromism. In
addition, our studies underway show that the use of dppbz
leads to other complexes showing the luminescent mechano-
chromism. [Ag(dppbz)2]+ and [Ag2I2(dppbz)2] also show
luminescent color change on grinding. As mentioned above,
the presence of phenylene ring between the phosphino groups
of dppbz must be a key of such mechanochromic properties.
Further studies for structural and optical properties of these
complexes in detail will elucidate the mechanism for this type
of chromism.
8 Au(I) complexes: K. Saito, T. Tsukuda, K. Matsumoto and
T. Tsubomura, Bull. Chem. Soc. Jpn., 2007, 80, 533–535.
9 See reviews as follows: (a) A. Barbieri, G. Accorsi and
N.
Armaroli,
Chem.
Commun.,
2008,
2185–2193;
(b) N. Armaroli, Chem. Soc. Rev., 2001, 30, 113–124;
(c) D. V. Scaltrito, D. W. Thompson, J. A. O’Callaghan and
G. J. Meyer, Coord. Chem. Rev., 2000, 208, 243–266;
(d) D. R. McMillin and K. M. McNett, Chem. Rev., 1998, 98,
1201–1219.
10 A. Dairiki, T. Tsukuda, K. Matsumoto and T. Tsubomura,
Polyhedron, 2009, 28, 2730–2734.
11 (a) M. Kato, Bull. Chem. Soc. Jpn., 2007, 80, 287–294;
(b) M. A. Mansour, W. B. Connick, R. J. Lachicotte,
H. J. Gysling and R. J. Eisenberg, J. Am. Chem. Soc., 1998, 120,
1329–1330.
We thank Prof. T. Kojima, Prof. S. Satokawa and Dr K.
Urasaki for the powder X-ray diffraction and the DSC
thermal analysis.
12 M. Osawa and M. Hoshino, Chem. Commun., 2008, 6384–6386.
ꢁc
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 1905–1907 | 1907