J.-K. Fang et al. / Tetrahedron 66 (2010) 5479e5485
5485
d
84.79, 96.57, 102.16, 113.25, 118.11, 120.52, 121.09, 128.23, 129.16,
References and notes
130.78, 131.81, 133.18, 133.89, 135.37, 137.71, 137.97, 149.03.
To a flask were added 4-ethynyl-N,N-diphenylbenzenamine
(43 mg, 0.16 mmol), 29 (84 mg, 0.17 mmol), Pd(PPh3)4 (11 mg,
0.01 mmol), CuI (2 mg, 0.01 mmol), diisopropylamine (5 mL), and
toluene (5 mL), and the mixture was stirred under nitrogen at room
temperature overnight. After usual workup with CH2Cl2/NH4Claq, the
combined organic layer was dried over MgSO4 and evaporated. The
crude product was subjected to column chromatography on silica gel
(hexane/EtOAc, 4:1)to give 99 mgof 31 (97%yield) asan orange foam.
1. (a) Acetylene Chemistry: Chemistry, Biology, and Material Science; Diederich, F.,
Stang, P. J., Tykwinski, R. R., Eds.; VCH: Weinheim, Germany, 2005; (b) Modern
Acetylene Chemistry; Stang, P. J., Diederich, F., Eds.; VCH: Weinheim, Germany,
1995.
2. For recent reviews on dehydrobenzoannulenes: (a) Tobe, Y.; Sonoda, M. In
Modern Cyclophane Chemistry; Gleiter, R., Hopf, H., Eds.; Wiley-VCH: Wein-
heim, Germany, 2004; p 1; (b) Jones, C. S.; O’Connor, M. J.; Haley, M. M. In
Acetylene Chemistry: Chemistry, Biology and Material Science; Diederich, F.,
Stang, P. J., Tykwinski, R. R., Eds.; Wiley-VCH: Weinheim, Germany, 2005;
p 303; (c) Spitler, E. L.; Johnson, C. A., II; Haley, M. M. Chem. Rev. 2006, 106,
5344.
3. For recent reviews: (a) Marsden, J. A.; Palmer, G. J.; Haley, M. M. Eur. J. Org.
Chem. 2003, 2355; (b) Haley, M. M. Synlett 1998, 557; (c) Haley, M. M.; Wan, W.
B. In Advances in Strained and Interesting Organic Molecules; Halton, B., Ed.; JAI:
New York, NY, 2000; Vol. 8, p 1; (d) Bunz, U. H. F.; Rubin, Y.; Tobe, Y. Chem. Soc.
Rev. 1999, 28, 107.
4. (a) Doi, T.; Orita, A.; Matsuo, D.; Saijo, R.; Otera, J. Synlett 2008, 55; (b) Orita, A.;
Taniguchi, H.; Otera, J. Chem.dAsian J. 2006, 1, 430; (c) Orita, A.; Nakano, T.;
Yokoyama, T.; Babu, G.; Otera, J. Chem. Lett. 2004, 33, 1298; (d) Orita, A.;
Miyamoto, K.; Nakashima, M.; Ye, F.; Otera, J. Adv. Synth. Catal. 2004, 346, 767;
(e) Ye, F.; Orita, A.; Yaruva, J.; Hamada, T.; Otera, J. Chem. Lett. 2004, 33, 528; (f)
Ye, F.; Orita, A.; Doumoto, A.; Otera, J. Tetrahedron 2003, 59, 5635; (g) Orita, A.;
Ye, F.; Doumoto, A.; Otera, J. Chem. Lett. 2003, 32, 104.
5. (a) Mao, G.; Orita, A.; Matsuo, D.; Hirate, T.; Iwanaga, T.; Toyota, S.; Otera, J.
Tetrahedron Lett. 2009, 50, 2860; (b) Mao, G.; Orita, A.; Fenenko, L.; Yahiro, M.;
Adachi, C.; Otera, J. Mater. Chem. Phys. 2009, 115, 378; (c) Ding, C.; Babu, G.;
Orita, A.; Hirate, T.; Otera, J. Synlett 2007, 2559; (d) An, D.-L.; Zhang, Z.; Orita, A.;
Mineyama, H.; Otera, J. Synlett 2007, 1909; (e) Fenenko, L.; Shao, G.; Orita, A.;
Yahiro, M.; Otera, J.; Svechnikov, S.; Adachi, C. Chem. Commun. 2007, 2278; (f)
Shao, G.; Orita, A.; Nishijima, K.; Ishimaru, K.; Takezaki, M.; Wakamatsu, K.;
Gleiter, R.; Otera, J. Chem.dAsian J. 2007, 2, 489; (g) Shao, G.; Orita, A.; Tani-
guchi, H.; Ishimaru, K.; Otera, J. Synlett 2007, 231; (h) Shao, G.; Orita, A.;
Nishijima, K.; Ishimaru, K.; Takezaki, M.; Wakamatsu, K.; Otera, J. Chem. Lett.
2006, 35, 1284.
Compound 31: Mp 91e93 ꢀC; 1H NMR (500 MHz, CDCl3)
d 6.99
(d, 8.0 Hz, 2H), 7.07 (t, 7.0 Hz, 2H), 7.11 (d, 7.5 Hz, 4H), 7.16 (d, 7.5 Hz,
2H), 7.27 (d, 7.5 Hz, 4H), 7.34 (d, 8.5 Hz, 2H), 7.36 (s, 1H), 7.40 (d,
8.0 Hz, 2H), 7.45 (t, 7.5 Hz, 2H), 7.52 (d, 7.5 Hz, 2H), 7.58 (t, 7.0 Hz,
1H), 7.65 (t, 7.0 Hz, 4H); 13C NMR (125 MHz, CDCl3)
d 85.21, 87.97,
93.11, 103.20, 113.25, 114.99, 118.22, 120.22, 121.36, 121.83, 123.71,
125.08, 125.49, 128.26, 129.19, 129.39, 130.89, 131.38, 131.86, 131.92,
132.58, 133.88, 135.51, 138.17, 146.92, 148.28, 148.61.
To a round-bottom flask were added 31 (83 mg, 0.13 mmol),
potassium tert-butoxide (16 mg, 0.14 mmol), and THF (5 mL) under
nitrogen at 0 ꢀC. The mixture was stirred at room temperature for
3 h. After usual workup with CH2Cl2/NH4Claq, the combined organic
layer was dried over MgSO4 and evaporated. The crude product was
subjected to column chromatography on silica gel (hexane/CH2Cl2,
1:1) to give 50 mg of 13 (78% yield) as a yellow powder.
Compound 13: Mp 245e247 ꢀC; 1H NMR (500 MHz, CDCl3)
d 7.01
(d, 8.5 Hz, 2H), 7.08 (t, 7.5 Hz, 2H), 7.12 (d, 8.0 Hz, 4H), 7.28 (t, 8.0 Hz,
4H), 7.36 (d, 9.0 Hz, 2H), 7.47 (d, 8.5 Hz, 2H), 7.50 (d, 8.5 Hz, 2H),
7.60 (d, 8.5 Hz, 2H), 7.63 (d, 8.5 Hz, 2H); 13C NMR (125 MHz, CDCl3)
6. Molecular Fluorescence: Principles and Applications; Valeur, B., Ed.; VCH: Wein-
heim, Germany, 2001, Chapter 3.
7. Hirata, Y.; Okada, T.; Nomoto, T. J. Phys. Chem. A 1998, 102, 6585.
8. Hirata, Y.; Okada, T.; Nomoto, T. Chem. Phys. Lett. 1997, 278, 133.
9. Fang, J.-K.; An, D.-L.; Wakamatsu, H.; Ishikawa, T.; Iwanaga, T.; Toyota, S.;
Matsuo, D.; Orita, A.; Otera, J. Tetrahedron Lett. 2010, 51, 917.
d
74.77, 78.05, 80.12, 83.64, 88.08, 93.00, 112.35, 115.17, 118.24,
120.23, 121.92, 123.71, 125.10, 126.69, 129.41, 131.41, 132.09, 132.48,
132.60, 132.89, 146.99, 148.28; HRMS m/z [M]þ calcd for C37H22N2
494.1783, found 494.1779.
10. (a) Shimoi, Y.; Yamaguchi, Y.; Yoshida, Z.-I. Synth. Metal 2009, 159, 2211; (b)
Yamaguchi, Y.; Shimoi, Y.; Ochi, T.; Wakamiya, T.; Matsubara, Y.; Yoshida, Z.-I. J.
Phys. Chem. A 2008, 112, 5074; (c) Ochi, T.; Yamaguchi, Y.; Wakamiya, T.;
Matsubara, Y.; Yoshida, Z.-I. Org. Biomol. Chem. 2008, 6, 1222; (d) Ochi, T.;
Yamaguchi, Y.; Kobayashi, S.; Wakamiya, T.; Matsubara, Y.; Yoshida, Z.-I. Chem.
Lett. 2007, 36, 794.
4.4. Synthesis of 14
To a flask were added 19 (100 mg, 0.25 mmol), 17 (85 mg,
0.30 mmol), diethyl chlorophosphate (86 mg, 0.25 mmol), and THF
(10 mL) under nitrogen. A THF solution of LiHMDS (0.75 mL, 1.0 M,
0.75 mmol) was added at ꢁ78 ꢀC, and the mixture was stirred at 0 ꢀC
for 3 h. After the usual workup with CH2Cl2/NH4Claq, the combined
organic layer was dried over MgSO4 and evaporated. The crude
product was subjected to column chromatography on silica gel
(hexane/CH2Cl2, 1:1) to give 20 mg of 14 (15% yield) as a pale yellow
powder.
€
11. For recent reviews on molecular photovoltaics: (a) Gratzel, M. Acc. Chem. Res.
2009, 42, 1788; (b) Imahori, H. J. Mater. Chem. 2007, 17, 31; (c) Hagfeldt, A.;
€
Gratzel, M.; Nogueria, A. F.; Furtado, L. F. O.; Formiga, A. L. B.; Nakamura, M.;
€
Araki, K.; Toma, H. E.; Panigrahi, S.; Pal, T. Chemtracts 2004, 17, 175; (d) Gratzel,
M. Coord. Chem. Rev. 1998, 171, 245 For recent reviews on organic dye for solar
cell: Robertson, N. Angew. Chem., Int. Ed. 2006, 45, 2338.
12. (a) Beens, H.; Knibbe, H.; Weller, A. J. Chem. Phys. 1967, 47, 1183; (b) Lippert, E. Z.
Naturforsch 1955, 10a, 541; (c) Mataga, N.; Kaifu, Y.; Koizumi, M. Bull. Chem. Soc.
Jpn. 1956, 29, 465.
13. See Supplementary data for details.
Compound 14: Mp>250 ꢀC decomp.; 1H NMR (500 MHz, CDCl3)
14. Theoretical calculations were carried out on 1e14 with benzene rings of phe-
nylenee(poly)ethynylenes fixed in the same plane by using Spartan ’08
(Wavefunction, Inc.). Schematic HOMOs and LUMOs of 1e14 were shown in
Supplementary data together with their energy levels.
15. When emission spectra of Ph2N/cyano-substituted acetylene 14 were recorded,
some decomposition was observed in polar solvents such as DMF and MeCN.
16. This bathochromic shift can be attributed not to excimer formation but to
solvent polarity effect because emission spectra of 2 were identical in 10ꢁ4 M to
10ꢁ7 M of CH2Cl2 solution indicating no sign of excimer formation. See
Supplementary data.
d
7.00 (d, 8.5 Hz, 2H), 7.08 (t, 7.5 Hz, 2H), 7.12 (d, 8.0 Hz, 4H), 7.29 (t,
7.5 Hz, 4H), 7.36 (d, 8.5 Hz, 2H), 7.46 (d, 8.0 Hz, 2H), 7.50 (d, 8.0 Hz,
2H), 7.61 (d, 8.0 Hz, 2H), 7.64 (d, 8.0 Hz, 2H); 13C NMR (125 MHz,
CDCl3) d 66.37, 68.61, 75.60, 76.60, 78.40, 79.62, 88.08, 93.39, 112.81,
115.11, 118.11, 119.59, 121.90, 123.75, 125.14, 125.49, 125.98, 129.43,
131.43, 132.12, 132.62, 132.94, 133.35, 147.00, 148.34; HRMS m/z
[M]þ calcd for C39H22N2 518.1783, found 518.1791.
17. Solvent dielectric constants
3 and refractive indices n were taken from the
following: Montalti, M.; Credi, A.; Prodi, L.; Gandolfi, M. T. Handbook of Photo-
chemistry, 3rd ed.; Taylor & Francis: New York, NY, 2006.
Acknowledgements
18. This smaller change of dipole moments Dm could be explained in terms of
larger polarization of 14 in the ground state than in the excited state attributed
to electron-withdrawing effect of cyano group, but this explanation is un-
ambiguously excluded because of little solvent effect observed in UV/vis
absorption spectra.
19. Herein we would like to limit description of syntheses of phenylene(poly)
ethynylenes 1e14 and their UV/vis absorption and photoluminescence
spectral data together with discussion of change of dipole moments Dm
between their excited and ground states because the main issue of this
paper is evaluation of electronic effect of acetylenic modes on charge-
This work was supported by the Grant-in-Aid for Scientific Re-
search and matching fund subsidy for private universities from
MEXT (Ministry of Education, Culture, Sports, Science and Tech-
nology), Japan, and Okayama Prefecture Industrial Promotion
Foundation.
Supplementary data
transferred excited states in donor-p-system/acceptor dyes. As one of re-
Experimental procedure, characterization details are fully
provided. Supplementary data associated with this article can be
viewers suggested, we are planning to investigate other optoelectronic
properties such as two photon absorption and two photon fluorescence of
1e14 in the near future.