pubs.acs.org/joc
than two monomers can be incorporated into conducting
polymers to induce multi-electrochromism.4
Designed Synthesis of Multi-Electrochromic Systems
Bearing Diaryl Ketone and Isophthalates
Recently, single molecular electrochromic materials have
attracted significant attention given their ability to be chemi-
cally engineered onto nanosized electrode materials.5 For ulti-
mate full-color displays, the combination of several independent
molecular electrochromic materials displaying the different
colors is needed. Usually, the related devices have been fabri-
cated based on a multilayer structure in which each layer con-
tains distinct colors.6 Comparatively, if the materials can show
multicolors depending on applied potentials, the structure of the
device can be more effectively designed. One can easily speculate
that the combination of several different molecular electrochro-
mic systems could generate more advanced systems. However,
compared to the conducting polymer-based electrochromic sys-
tems, the single molecular engineering of electrochromic systems
has been sparsely explored.
W. Sharmoukh,† Kyoung Chul Ko,† Changho Noh,‡
Jin Yong Lee,*,† and Seung Uk Son*,†
†Department of Chemistry and Department of Energy
Science, Sungkyunkwan University, Suwon 440-746, Korea,
and ‡Display Lab, Samsung Advanced Institute of Technology
(SAIT), Yongin 446-712, Korea
Received July 14, 2010
The ketyl radical system, with an anionic radical of the
general structure [C-O] -, has been well recognized in orga-
3
nic chemistry for a long time.7 One of the most famous ketyl
radical systems can be formed by the one-electron reduction
of benzophenone. Our research group has studied the re-
ductive inorganic and organic electrochromic systems in-
cluding isophthalate derivatives.8 In this study, we report on
the molecular engineering of multi-electrochromic systems
through combination of the diaryl ketyl radical and iso-
phthalate systems (Scheme 1).
A series of new molecular electrochromic systems bearing the
diaryl ketones and isophthalates have been designed. As shown
in Chart 1, the diaryl ketyl radical system was connected to
the isophthalate unit. The target electrochromic compounds in
Chart 1 were prepared following Scheme 2. Although, in addi-
tion to the compounds in Chart 1, the bis(isophthalate) com-
pounds, bearing 2,6-anthracene-9,10-dione, 3,30-benzil, and
5,50-di(2-thienyl)methanone as bridges, were also prepared;
they were excluded from the study due to solubility problems.
First, EC1 was prepared by coupling with isophthalic acid
and successive esterification9 (Scheme 2). The central methylene
group was then oxidized to a carbonyl group using CrO3.10 For
improvement of solubility in organic media and ultimate attach-
ment of compounds to electrode materials through olefin
New multi-electrochromic systems have been developed
through the combination of a diaryl ketyl radical system
with isophthalate-based electrochromic materials. The
location of the isophthalate group in compounds is very
critical to obtaining different colors in the multi-electro-
chromism.
Organic electrochromic materials have attracted spe-
cial attention due to their unique advantages over their
inorganic counterparts.1 First, organic materials possess
the flexibility necessary for flexible device fabrications.
Second, compared to inorganic materials, they display
diverse and clear colors with a relatively narrow absorp-
tion band.
During the past decade, the related studies have focused
on polymeric organic materials.2 Usually, redox reactions of
conducting organic polymers result in a change in the ab-
sorption band in the visible light range. By changing the
electronic structure of the monomers, the electrochromic
properties of the polymers are tuned.2,3 Furthermore, more
(4) Argun, A. A.; Aubert, P.-H.; Thompson, B. C.; Schwendeman, I.;
Gaupp, C. L.; Hwang, J.; Pinto, N. J.; Tanner, D. B.; MacDiarmid, A. G.;
Reynolds, J. R. Chem. Mater. 2004, 16, 4401.
(5) Cummins, D.;Boschloo,G.;Ryan, M.;Corr,D.;Rao, S.N.;Fitzmaurice,
D. J. Phys. Chem. B 2000, 104, 11449.
(6) Kobayashi, N.; Miura, S.; Nishimura, M.; Urano, H. Solar Energy
Mater. Solar Cells 2009, 92, 136.
€
€
(1) (a) Gratzel, M. Nature 2001, 409, 575. (b) Hunig, S.; Langels, A.;
Schmittel, M.; Wenner, H.; Perepichka, I. F.; Peters, K. Eur. J. Org. Chem.
2001, 1391. (c) Porter, W. W.; Vaid, T. P. J. Org. Chem. 2005, 70, 5028.
(7) Selected references: (a) Thum, C. C. L.; Khairallah, G. N.; O’Hair,
R. A. J. Angew. Chem., Int. Ed. 2008, 47, 9118 and references therein.
(b) Inui, M.; Nakazaki, A.; Kobayashi, S. Org. Lett. 2007, 9, 469. (c) Sakamoto,
M.; Cai, X.; Fujitsuka, M.; Majima, T. Chem.;Eur. J. 2006, 12, 1610.
(8) (a) Sharmoukh, W.; Ko, K. C.; Ko, J. H.; Nam, H. J.; Jung, D.-Y.;
Noh, C.; Lee, J. Y.; Son, S. U. J. Mater. Chem. 2008, 18, 4408.
(b) Sharmoukh, W.; Ko, K. C.; Park, S. Y.; Ko, J. H.; Lee, J. M.; Noh, C.;
Lee, J. Y.; Son, S. U. Org. Lett. 2008, 10, 5365. (c) Park, S. Y.; Lee, J. M.; Son,
S. U. J. Mater. Chem. 2009, 19, 7959. (d) Sharmoukh, W.; Ko, K. C.; Ko,
J. H.; Jung, I. G.; Noh, C.; Lee, J. Y.; Son, S. U. Org. Lett. 2010, 12, 3226.
_ ꢀ
(d) Sprutta, N.; Siczek, M.; Latos-Grazynski, L.; Pawlicki, M.; Szterenberg,
L.; Lis, T. J. Org. Chem. 2007, 72, 9501. (e) Lanzo, J.; Benedittis, M. D.;
Simone, B. C.; Imbardelli, D.; Formoso, P.; Manfredi, S.; Chidichimo, G.
J. Mater. Chem. 2007, 17, 1412. (e) Ito, S.; Morita, N. Eur. J. Org. Chem. 2009,
4567. (f) Sinan, M.; Ghosh, K.; Goswami, S. J. Org. Chem. 2010, 75, 2065.
(g) Reczek, J. J.; Rebolini, E.; Urbach, A. R. J. Org. Chem. 2010, 75, 2111.
(2) (a) Mortimer, R. J.; Dyer, A. L.; Reynolds, J. R. Displays 2006, 27, 2.
(b) Beaujuge, P.; Ellinger, S.; Reynolds, J. R. Nat. Mater. 2008, 7, 795.
(3) (a) Patra, A.; Wijsboom, Y. H.; Zade, S. S.; Li, M.; Sheynin, Y.;
€
(9) Mazik, M.; Konig, A. Eur. J. Org. Chem. 2007, 10, 3271.
(10) Xu, G.; Micklatcher, M.; Silvestri., M. A.; Hartman, T. L.; Burrier,
J.; Osterling, M. C.; Wargo, H.; Turpin, J. A.; Buckheit, R. W.; Cushman, M.
J. Med. Chem. 2001, 44, 4092.
ꢀ
Leitus, G.; Bendikov, M. J. Am. Chem. Soc. 2008, 130, 6734. (b) Beaupre, S.;
Dumas, J.; Leclerc, M. Chem. Mater. 2006, 18, 4011.
6708 J. Org. Chem. 2010, 75, 6708–6711
Published on Web 09/09/2010
DOI: 10.1021/jo101350k
r
2010 American Chemical Society