A. V. Malkov et al. / Tetrahedron: Asymmetry 21 (2010) 1173–1175
1175
Hall, D. G. Angew. Chem., Int. Ed. 2003, 42, 4732–4739; (e) Oestreich, M.;
Rendler, S. Synthesis 2005, 1727–1747; (f) Orito, Y.; Nakajima, M. Synthesis
2006, 1391–1401; (g) Benaglia, M.; Guizzetti, S.; Pignataro, L. Coord. Chem. Rev.
unreactive (Table 2, entries 1 and 2), suggesting that the nucleo-
philicity of the -carbon in silanes 4 and 5 is significantly reduced
(compared to allyltrichlorosilane) due to the electron-withdrawing
effect of the bromine. Therefore, we turned our attention to phos-
phine oxides as potentially more reactive catalysts.
c
ˇ
´
2007, 252, 492–512; (h) Malkov, A. V.; Kocovsky, P. Eur. J. Org. Chem. 2007, 29–
ˇ
´
36; (i) Kocovsky, P.; Malkov, A. V. Chiral Lewis Bases as Catalysts. In
Enantioselective Organocatalysis; Dalko, P. I., Ed.; Wiley-VCH: Weinheim,
2007; p 255; (j) Denmark, S. E.; Beutner, G. L. Angew. Chem., Int. Ed. 2008, 47,
1560–1638.
ˇ
´
2. Malkov, A. V.; Kabeshov, M. A.; Barłóg, M.; Kocovsky, P. Chem. Eur. J. 2009, 15,
1570–1573.
Table 2
Asymmetric allylation of aldehydes 1 with 4 and 5a
3. For asymmetric synthesis of vinylepoxides, see: (a) Hu, S.; Jayaraman, S.;
Oehlschlager, A. C. J. Org. Chem. 1996, 61, 7513–7520; (b) Solladie-Cavallo, A.;
Bouerat, L.; Roje, M. Tetrahedron Lett. 2000, 41, 7309–7312; (c) Bandini, M.;
Cozzi, P.; Melchiorre, P.; Morganti, S.; Umani-Ronchi, A. Org. Lett. 2001, 3,
1153–1155; (d) Zanardi, J.; Lamazure, D.; Miniere, S.; Reboul, V.; Metzner, P. J.
Org. Chem. 2002, 67, 9083–9086; (e) Aggarwal, V. K.; Alonso, E.; Bae, I.; Hynd,
G.; Lydon, K. M.; Palmer, M. J.; Patel, M.; Porcelloni, M.; Richardson, J.; Stenson,
R. A.; Studley, J. R.; Vasse, J.-L.; Winn, C. J. J. Am. Chem. Soc. 2003, 125, 10926–
10940; (f) Aggarwal, V. K.; Bae, I.; Lee, H.-Y.; Richardson, J.; Williams, D. T.
Angew. Chem., Int. Ed. 2003, 42, 3274–3278.
4. Shibata, I.; Fukuoka, S.; Baba, A. Chem. Lett. 1998, 533–534.
5. (a) Furuya, N.; Sukawa, T. J. Organomet. Chem. 1975, 96, C1–C3; (b) Nishiyama,
H.; Narimatsu, S.; Itoh, K. Tetrahedron Lett. 1981, 22, 5289–5292.
6. Just, G.; Ouellet, R. Can. J. Chem. 1976, 54, 2925–2934.
7. (a) Ma, S.; Lu, X. J. Chem. Soc., Chem. Commun. 1990, 1643–1644; (b) Ma, S.; Lu,
X. Org. Synth. 1999, Coll. Vol. 9, 415–417.
Entry
Catalyst
(mol %)
Aldehyde,
Ar
Silane,
X1, X2
T
(°C)
Product,
Eec
(%)
yieldb (%)
1
2
3
4
5
6
8
9
20 (10)
21 (10)
22 (10)
23 (20)
24 (10)
24 (10)
25 (10)
25 (10)
1a, Ph
1c, 4-CF3C6H4
1a, Ph
1a, Ph
1a, Ph
1a, Ph
1a, Ph
1c, 4-CF3C6H4
4, H, Br
5, Br, H
5, Br, H
4, H, Br
4, H, Br
5, Br, H
5, Br, H
5, Br, H
ꢁ20
ꢁ20
ꢁ20
ꢁ20
ꢁ20
ꢁ20
ꢁ20
ꢁ10
8a, 0
9c, 0
n/a
n/a
18
9a, 17
8a, 23
8a, 10
9a, 43
9a, 34
9c, 22
29
15
25d
50e
43
a
For the Scheme, see Table 1. The reactions were carried out in MeCN on a
0.5 mmol scale with a 1:1.1 aldehyde/silane ratio in the presence of the catalyst
overnight.
8. Kazmaier, U.; Lucas, S.; Klein, M. J. Org. Chem. 2006, 71, 2429–2433.
b
ˇ
´
9. Malkov, A. V.; Bell, M.; Castelluzzo, F.; Kocovsky, P. Org. Lett. 2005, 7, 3219–
The absolute configuration of the products was inferred from the known
3222.
absolute configuration of the (S,S)-(ꢁ)-bromohydrin 9a (as shown in the Schemes)
and the corresponding chlorohydrin18 and extrapolated to the rest of the series. This
configuration corresponds to that of the laevorotatory product obtained from the
reaction of PhCHO with Z-crotyltrichlorosilane catalyzed by (S)-25.17 The crude
products were almost pure diastereoisomers (P95:5) as shown by 1H NMR spec-
troscopy. The relative configuration was established by 1H NMR spectroscopy in
analogy with other crotyl-derived products;9,10 8a and 9a are known compounds.18
ˇ
´
10. (a) Malkov, A. V.; Dufková, L.; Farrugia, L.; Kocovsky, P. Angew, Chem., Int. Ed.
2003, 42, 3674–3677; (b) Malkov, A. V.; Ramírez-López, P.; Biedermannová, L.;
ˇ
´
Rulíšek, L.; Dufková, L.; Kotora, M.; Zhu, F.; Kocovsky, P. J. Am. Chem. Soc. 2008,
130, 5341–5348.
11. For other chiral N-oxide catalysts, see Refs. 1h–j and the following: (a) Malkov,
ˇ
´
A. V.; Orsini, M.; Pernazza, D.; Muir, K. W.; Langer, V.; Meghani, P.; Kocovsky, P.
Org. Lett. 2002, 4, 1047–1049; (b) Malkov, A. V.; Bell, M.; Vassieu, M.; Bugatti,
c
Established by chiral HPLC.
ˇ
´
V.; Kocovsky, P. J. Mol. Catal. A: Chem. 2003, 196, 179–186; (c) Malkov, A. V.;
½ ꢃ ¼ ꢁ8:1 (c 0.5, CH2Cl2); lit (Ref. 18) gives ½aꢃD ¼ ꢁ34:7 (c 2.1, CHCl3) for the
a 2D0
d
Bell, M.; Orsini, M.; Pernazza, D.; Massa, A.; Herrmann, P.; Meghani, P.;
highly enantiomerically enriched (1S,2S)-9a.
ˇ
´
Kocovsky, P. J. Org. Chem. 2003, 68, 9659–9668; (d) Malkov, A. V.; Westwater,
½ ꢃ ¼ ꢁ19:8 (c 0.5, CH2Cl2).
a 2D0
e
ˇ
ˇ
M.-M.; Kadlcíková, A.; Gutnov, A.; Hodacová, J.; Rankovic, Z.; Kotora, M.;
ˇ
´
Kocovsky, P. Tetrahedron 2008, 64, 11335–11348; (e) Malkov, A. V.; Gordon, M.
ˇ
ˇ
´
R.; Stoncius, S.; Hussain, J.; Kocovsky, P. Org. Lett. 2009, 11, 5390–5393; (f)
ˇ
ˇ
Hrdina, R.; Valterová, I.; Hodacová, J.; Císarová, I.; Kotora, M. Adv. Synth. Catal.
Indeed, the allylation of benzaldehyde with Z-5 in the presence
of the phosphine dioxide 22 (10 mol %),12 derived from Kagan’s
DIOP,13 produced syn-9a, though in low yield (17%) and with only
18% ee (entry 3). Monoxide14 23 and dioxide15 24 exhibited similar
levels of reactivity and enantioselectivity (entries 4–6). The most
promising results were obtained with (S)-BINAPO16,17 25
(10 mol %), which catalyzed the formation of syn-9a in 50% ee (en-
try 7) and syn-9c in 43% ee (entry 8).18 High diastereoselectivities
(P95:5) were again observed.19
ˇ
ˇ
2007, 349, 822–826; (g) Hrdina, R.; Kadlcíková, A.; Valterová, I.; Hodacová, J.
Tetrahedron: Asymmetry 2007, 17, 3185–3191; (h) Hrdina, R.; Boyd, T.;
Valterová, I.; Hodacová, J.; Kotora, M. Synlett 2008, 3141–3144; (i) Hrdina, R.;
Dracinsky, M.; Valterová, I.; Hodacová, J.; Císarová, I.; Kotora, M. Adv. Synth.
Catal. 2008, 350, 1449–1456; (j) Kadlcíková, A.; Hrdina, R.; Valterová, I.; Kotora,
M. Adv. Synth. Catal. 2009, 351, 1279–1283; (k) Hrdina, R.; Opekar, F.; Roithová,
J.; Kotora, M. Chem. Commun. 2009, 2314–2316; For chiral sulfoxide-type
catalysts, see: (l) Massa, A.; Malkov, A. V.; Kocovsky, P.; Scettri, A. Tetrahedron
Lett. 2003, 44, 7179–7181.
ˇ
ˇ
´
ˇ
ˇ
ˇ
ˇ
´
12. Hashmi, A. S. K.; Naumann, F.; Probst, R.; Bats, J. W. Angew. Chem., Int. Ed. 1997,
36, 104–106.
13. Dang, T. P.; Kagan, H. B. J. Chem. Soc., Chem. Commun. 1971, 481–482.
14. Cote, A.; Desrosiers, J.-N.; Boezio, A. A.; Charette, A. B. Org. Synth. 2006, 83, 1–4.
15. Cote, A.; Boezio, A. A.; Charette, A. B. Angew. Chem., Int. Ed. 2004, 43, 6525–
6528.
3. Conclusion
16. (a) Takaya, H.; Mashima, K.; Koyano, K.; Yagi, M.; Kumobayashi, H.; Taketomi,
T.; Akutagawa, S.; Noyori, R. J. Org. Chem. 1986, 51, 629–635; (b) Takaya, H.;
Akutagawa, S.; Noyori, R. Org. Synth. 1989, 67, 20–32; (c) Gladiali, S.;
Pulacchini, S.; Fabbri, D.; Manassero, M.; Sansoni, M. Tetrahedron: Asymmetry
1998, 9, 391–395; (d) Berthod, M.; Saluzzo, C.; Mignani, G.; Lemaire, M.
Tetrahedron: Asymmetry 2004, 15, 639–645; (e) Nakajima, M.; Sugiura, M.;
Kotani, S.; Tando, T.; Shimoda, Y. Tetrahedron: Asymmetry 2009, 20, 1369–1370.
17. The related allylation of aldehydes with E- and Z-crotyl-trichlorosilane,
catalyzed by BINAPO, exhibited 46% and 4% ee, respectively: Kotani, S.;
Hashimoto, S.; Nakajima, M. Tetrahedron 2007, 63, 3122–3132.
18. The (1R,2R)-(+)- and (1S,2S)-(ꢁ)-bormohydrin 9a was previously obtained via
In conclusion, we have synthesized isomerically pure trans- and
cis-c-bromoallyltrichlorosilanes 4 and 5, which in the Lewis base-
catalyzed addition to aromatic aldehydes 1 produced the corre-
sponding allylbromohydrins 8 and 9, respectively, as highly pure
diastereoisomers (P95:5). In the enantioselective variant, promis-
ing enantioselectivity (50% ee) was obtained with BINAPO 25 as a
catalyst. It is noteworthy that all these reactions proceed solely via
the
c-attack of the allylic moiety; the formation of the products
corresponding to the a-attack was not observed within the limits
the BF3-catalyzed stoichiometric addition of the enantiomeric [Z-c-
of the 1H NMR spectroscopy.20
bromoallyl]B(Ipc)2 to PhCHO in 74% ee (at ꢁ78 °C) and 86% ee (at ꢁ90 °C);
the syn:anti ratio was 90:10 and 94:6, respectively.3a
19. Silane 5 (0.55 mmol) was added to a solution of 25 (0.05 mmol), i-PrEt2N
(2.5 mmol), and PhCH@O (0.50 mmol) in MeCN (2 mL) under argon at ꢁ20 °C
and the mixture was stirred at ꢁ20 °C overnight. The reaction was quenched
with aq. NaHCO3 (1 mL) and the mixture was extracted with ether (3 ꢂ 10 mL).
The extract was washed with brine (2 ꢂ 10 mL), dried (Na2SO4), and
evaporated. Purification by flash chromatography on silica gel (15ꢂ1 cm)
with petroleum ether/AcOEt (6:1) afforded (ꢁ)-9a (34%). HPLC (Chiracel IB,
Acknowledgments
We acknowledge the EPSRC for Grant No. GR/T27051/01 and
Loughborough University for an additional support.
flow
rate:
0.5 mL/min,
hexane/i-PrOH
99:1;
tminor = 40.30 min,
References
tmajor = 42.84 min) showed 50% ee.
20. Formation of small amounts of the products of
a
-attack (610%) was observed
-haloallylboranes.18
1. For leading reviews, see: (a) Denmark, S. E.; Stavenger, R. A. Acc. Chem. Res.
2000, 33, 432–440; (b) Denmark, S. E.; Fu, J. Chem. Commun. 2003, 167–170; (c)
Denmark, S. E.; Fu, J. Chem. Rev. 2003, 103, 2763–2793; (d) Kennedy, J. W. J.;
for the stoichiometric allylation of aldehydes with
c