446
Z.-L. You et al. / Inorganic Chemistry Communications 12 (2009) 444–446
Table 2
obtained free of charge from The Cambridge Crystallographic Data
Inhibition of urease by the tested materials.
data associated with this article can be found, in the online version,
a
Tested materials
IC50
(lM)
1
>100
2
3
HL1
72.19 0.70
77.36 0.53
>100
References
HL2
HL3
>100
>100
[1] (a) S. Das, P. Banerjee, S.-M. Peng, G.-H. Lee, J. Kim, S. Goswami, Inorg. Chem.
45 (2006) 562;
Zinc acetate
Acetohydroxamic acid
31.45 0.39
45.32 0.27
(b) L.S. Felices, E.C. Escudero-Ada´n, J. Benet-Buchholz, A.W. Kleij, Inorg. Chem.
48 (2009) 846;
(c) X. Li, D. Cheng, J. Lin, Z. Li, Y. Zheng, Cryst. Growth Des.
2853.
8 (2008)
a
All IC50 values were expressed as mean S.D. values of the three parallel tests.
[2] (a) L.-N. Zhu, N. Xu, W. Zhang, D.-Z. Liao, K. Yoshimura, K. Mibu, Z.-H. Jiang,
S.-P. Yan, P. Cheng, Inorg. Chem. 46 (2007) 1297;
(b) X.-Y. Wang, L. Wang, Z.-M. Wang, S. Gao, J. Am. Chem. Soc. 128 (2006) 674;
(c) L. Zhang, L.-F. Tang, Z.-H. Wang, M. Du, M. Julve, F. Lloret, J.-T. Wang, Inorg.
Chem. 40 (2001) 3619;
between the adjacent moieties as those in 1 and 2, instead, there
exists intramolecular C–HÁ Á ÁN hydrogen bonds. The lack of inter-
molecular hydrogen bonds, as well as the large steric effects of
the cyclohexyl groups in 3 lead to the two adjacent moieties devi-
ate from each other, and the azide groups adopt end-to-end bridg-
ing mode. The ZnÁ Á ÁZn distances are 5.879(2) and 5.545(2) Å,
respectively.
It can be seen that the hydrogen bonds in 1 and 2 influence the
bridging modes of the azide groups, while that in 3, the steric ef-
fects of the terminal cyclohexyl group appears more convincing.
The measurement of jack bean urease inhibitory activity was
carried out for three parallel times according to the literature phe-
nol-red method [10]. The acetohydroxamic acid was used as a po-
sitive reference. The results are summarized in Table 2. Complex 1
shows no activity, while 2 and 3 show weak activity against the en-
zyme. The results in this paper are accordance with those reported
previously, that the zinc(II) complexes have much weak urease
inhibitory activities [11].
(d) W.J. Evans, S.A. Kozimor, J.W. Ziller, Science 309 (2005) 1835.
[3] (a) L. Tatar, D. Ülkü, O. Atakol, R. Kurtaran, Anal. Sci. 18 (2002) 1171;
(b) W.-H. Li, Chin. J. Struct. Chem. 26 (2007) 1053;
(c) S. Basak, S. Sen, S. Banerjee, S. Mitra, G. Rosair, M.T.G. Rodriguez,
Polyhedron 26 (2007) 5104.
[4] (a) Z.-L. You, H.-L. Zhu, Z. Anorg. Allg. Chem. 632 (2006) 140;
(b) Z.-L. You, D.-H. Shi, H.-L. Zhu, Inorg. Chem. Commun. 9 (2006) 642;
(c) H.-D. Bian, W. Gu, J.-Y. Xu, F. Bian, S.-P. Yan, D.-Z. Liao, Z.-H. Jiang, P. Cheng,
Inorg. Chem. 42 (2003) 4265.
[5] C.-G. Zhu, Y.-J. Wei, F.-W. Wang, Acta Crystallogr. E63 (2007) m3197.
[6] Anal. Calc. for C16H22N2O (HL1): C 74.4, H 8.6, N 10.8%. Found: C 74.7, H 8.5, N
11.0%. Anal. Calc. for C12H16BrClN2O (HL2): C 45.1, H 5.0, N 8.8%. Found: C 45.5,
H 5.2, N 8.7%. Anal. Calc. for C14H18BrClN2O (HL3): C 48.6, H 5.2, N 8.1%. Found:
C 48.1, H 5.2, N 8.3%. Selected IR data (KBr, cmÀ1): HL1,
m
1632 (s, C@N); HL2,
m
1645 (s, C@N); HL3,
m
1643 (s, C@N). 1HNMR data (CDCl3, ppm): HL1, d = 0.91
(t, 3H), 1.53 (m, 2H), 2.17 (s, 1H), 2.56 (t, 2H), 2.96 (t, 2H), 3.56 (t, 2H), 7.12 (d,
1H), 7.14 (t, 1H), 7.21 (t, 1H), 7.45 (d, 1H), 7.60 (d, 1H), 7.78 (d, 1H), 8.17 (s,
1H); HL2, d = 0.91 (t, 3H), 1.53 (m, 2H), 2.16 (s, 1H), 2.56 (t, 2H), 2.96 (t, 2H),
3.57 (t, 2H), 7.14 (s, 1H), 7.51 (s, 1H), 8.19 (s, 1H); HL3, d = 1.43 (m, 2H), 1.56
(m, 4H), 2.16 (s, 1H), 2.44 (t, 4H), 2.63 (t, 2H), 3.72 (t, 2H), 7.13 (d, 1H), 7.54 (d,
1H), 8.18 (s, 1H).
In summary, the present study reports the synthesis, structures
and urease inhibitory activity of three azide-bridged polymeric
Schiff base zinc(II) complexes. The steric effects of the Schiff bases
and the hydrogen bonds can influence the bridging modes of the
azide groups. The urease inhibitory activities of the zinc(II) com-
plexes are not very satisfactory.
[7] Anal. Calc. for C16H19N5OZn (1): C 53.0, H 5.3, N 19.3%. Found: C 53.6, H 5.4, N
19.0%. Anal. Calc. for C12H15BrClN5OZn (2): C 33.8, H 3.5, N 16.4%. Found: C
33.4, H 3.6, N 16.6%. Anal. Calc. for C14H17BrClN5OZn (3): C 37.2, H 3.8, N 15.5%.
Found: C 37.5, H 4.0, N 15.2%. Selected IR data (KBr, cmÀ1): 1,
m
2106 (vs, N3),
m
2066 (sh, vs, N3),
m
1619 (s, C@N). 2,
m
2100 (vs, N3),
m
1633 (s, C@N). 3,
m
2145
(s, N3), 2087 (vs, N3),
m
m
1632 (s, C@N).
[8] Crystal data for 1 (C16H19N5OZn): Mt = 362.73, orthorhombic, space group
Pccn, a = 22.232(2), b = 8.639(2), c = 17.222(3) Å, V = 3307.7(10) Å3, Z = 8,
q
calcd = 1.457 g cmÀ3 (MoK ) = 1.496 mmÀ1
, l , R1 = 0.0418, wR2 = 0.1057 (all
a
data), T = 298 K. Crystal data for 2 (C12H15BrClN5OZn): Mt = 426.02, monoclinic,
space group P21/c, a = 9.423(2), b = 22.685(3), c = 7.318(2) Å, b = 94.94(3)°
Acknowledgement
V = 1558.5(6) Å3,
Z = 4,
q
calcd = 1.816 g cmÀ3
,
l
(MoK ) = 4.316 mmÀ1
,
a
This work was financially supported by the Office of Dalian Sci-
ence & Technology (Project No. 2007J23JH018) and by the Educa-
tion Office of Liaoning Province (Project No. 2007T092).
R1 = 0.0368, wR2 = 0.0884 (all data), T = 298 K. Crystal data for
3
(C14H17BrClN5OZn): Mt = 452.06, monoclinic, space group C2/c, a = 28.679(3),
b = 7.039(1), c = 18.881(2) Å, b = 117.33(3)°, V = 3386.1(12) Å3, Z = 8, qcalcd
=
1.774 g cmÀ3 (MoK ) = 3.979 mmÀ1
, l , R1 = 0.0452, wR2 = 0.1038 (all data),
a
T = 298 K.
[9] A.W. Addison, T.N. Rao, J. Reedijk, J. van Riju, G.C. Verschoor, J. Chem. Soc.
Dalton Trans. (1984) 1349.
Appendix A. Supplementary material
[10] (a) T. Tanaka, M. Kawase, S. Tani, Life Sci. 73 (2003) 2985;
(b) Z.-L. You, P. Zhou, Inorg. Chem. Commun. 10 (2007) 1273.
[11] K. Cheng, Z.-L. You, H.-L. Zhu, Aust. J. Chem. 60 (2007) 375.
CCDC 719165 (1), 719166 (2), and 719167 (3) contain the sup-
plementary crystallographic data for this paper. These data can be