6772 Journal of Medicinal Chemistry, 2010, Vol. 53, No. 18
Comeau et al.
(p-NPP) was at the respective Km for each PTP, 1 mM EDTA, 50
mM NaCl, and 50 mM 3,3-dimethylglutarate buffer at pH 7.0.
The experimentally determined Km values for Yersinia PTP,
PTP1B, and TCPTP were 1.7, 2.3, and 1.7 mM, respectively. The
activity of HePTP was assayed using 4-methylumbelliferyl
phosphate (MUP) at 25 °C and the reaction progress was
monitored using fluorescence spectroscopy. Initial rates were
determined by monitoring the hydrolysis of MUP at excitation
and emission wavelengths of 340 and 460 nm, respectively, from
0 to 150 s after mixing. Percent inhibition assay solutions for
HePTP contained 10% DMSO, 174 μM MUP, 1 mM EDTA,
50 mM NaCl, 50 mM 3,3-dimethylglutarate buffer at pH 7.0.
The experimentally determined Km value of MUP for HePTP
was 174 μM. IC50 values were calculated using the commercial
graphing software Grafit (Erithacus Software Ltd.). Data were
obtained for assays with at least five different concentrations, in
duplicate, of each inhibitor.
(8) Kaniga, K.; Uralil, J.; Bliska, J. B.; Galan, J. E. A Secreted Protein
Tyrosine Phosphatase with Modular Effector Domains in the
Bacterial Pathogen Salmonella typhimurium. Mol. Microbiol.
1996, 21, 633–641.
(9) Orth, K.; Palmer, L. E.; Bao, Z. Q.; Stewart, S.; Rudolph, A. E.;
Bliska, J. B.; Dixon, J. E. Inhibition of the Mitogen-Activated
Protein Kinase Kinase Superfamily by a Yersinia Effector. Science
1999, 285, 1920–1923.
(10) Guan, K.; Dixon, J. E. Protein Tyrosine Phosphatase Activity of an
Essential Virulence Determinant in Yersinia. Science 1990, 249,
553–556.
(11) (a) Black, D. S.; Marie-Cardine, A.; Schraven, B.; Bliska, J. B. The
Yersinia Tyrosine Phosphatase YopH Targets a Novel Adhesion-
Regulated Signaling Complex in Macrophages. Cell. Microbiol.
2000, 2, 401–414. (b) Hamid, N.; Gustavsson, A.; Andersson, K.;
McGee, K.; Persson, C.; Rudd, C. E.; Fallman, M. YopH Depho-
sphorylates Cas and Fyn-Binding Protein in Macrophages. Microbial
Pathog. 1999, 26, 231–242.
(12) Yao, T.; Mecsas, J.; Healy, J. I.; Falkow, S.; Chien, Y.-H. Suppres-
sion of T and B Lymphocyte Activation by a Yersinia pseudotu-
berculosis Virulence Factor, YopH. J. Exp. Med. 1999, 190, 1343–
1350.
(13) Mustelin, T.; Tautz, L.; Page, R. Structure of the Hematopoietic
Tyrosine Phosphatase (HePTP) Catalytic Domain: Structure of a
KIM Phosphatase with Phosphate Bound at the Active Site. J.
Mol. Biol. 2005, 354, 150–163.
(14) Zanke, B.; Squire, J.; Griesser, H.; Henry, M.; Suzuki, H.; Patterson,
B. W. A Hematopoietic Protein Tyrosine Phosphatase (HePTP)
Gene that is Amplified and Overexpressed in Myeloid Malignancies
Maps to Chromosome 1q32.1. Leukemia 1994, 8, 236–244.
(15) (a) Chen, Y. T.; Seto, C. T. Divalent and trivalent R-ketocar-
boxylic acids as inhibitors of protein tyrosine phosphatases.
J. Med. Chem. 2002, 45, 3946–3952. (b) Xie, J.; Seto, C. T. A two
stage click-based library of protein tyrosine phosphatase inhibitors.
Bioorg. Med. Chem. Lett. 2007, 15, 458–474. (c) Xie, J.; Seto, C. T.
Investigations of linker structure on the potency of a series of bidentate
protein tyrosine phosphatase inhibitors. Bioorg. Med. Chem. 2005, 13,
2981–2991.
Acknowledgment. This work was supported by an American
Cancer Society Research Scholar Grant (RSG-08-067-01-LIB)
to R.P.
Supporting Information Available: Synthetic procedures,
compound characterization, HPLC traces for 2a-d, Lineweaver-
Burk analyses for compounds 2a and 2b. This material is avail-
References
(1) For recent reviews describing the development of small molecule
PTP inhibitors, see: (a) Combs, A. P. Recent advances in the
discovery of competitive protein tyrosine phosphatase 1B inhibi-
tors for the treatment of diabetes, obesity, and cancer. J. Med.
Chem. 2010, 53, 2333–2344. (b) Heneberg, P. Use of protein tyrosine
phosphatase inhibitors as promising targeted therapeutic drugs. Curr.
Med. Chem. 2009, 16, 706–733.
(2) Pathak, M. K.; Yi, T. Sodium stibogluconate is a potent inhibitor
of protein tyrosine phosphatases and augments cytokine responses
in hemopoietic cell lines. J. Immunol. 2001, 167, 3391–3397.
(3) Hardy, S.; Tremblay, M. L. Protein tyrosine phosphatases: new
markers and targets in oncology? Curr. Oncol. 2008, 15, 5–8.
(4) Kenner, K. A.; Anyanwu, E.; Olefsky, J. M.; Kusari, J. Protein
tyrosine phosphatase 1B is a negative regulator of insulin- and
insulin-like growth factor-I-stimulated signaling. J. Biol. Chem.
1996, 271, 19810–19816.
(5) (a) Elchebly, M.; Payette, P.; Michaliszyn, E.; Cromlish, W.;
Collins, S.; Loy, A. L.; Normandin, D.; Cheng, A.; Himms-Hagen,
J.; Chan, C.-C.; Ramachandran, C.; Gresser, M. J.; Tremblay,
M. L.; Kennedy, B. P. Increased insulin sensitivity and obesity
resistance in mice lacking the protein tyrosine phosphatase-1B
gene. Science 1999, 283, 1544–1548. (b) Klaman, L. D.; Boss, O.;
Peroni, O. D.; Kim, J. K.; Martino, J. L.; Zabolotny, J. M.; Moghal, N.;
Lubkin, M.; Kim, Y. B.; Sharpe, A. H.; Stricker-Krongrad, A.; Shulman,
G. I.; Neel, B. G.; Kahn, B. B. Increased energy expenditure, decreased
adiposity, and tissue-specific insulin sensitivity in protein-tyrosine
phosphatase 1B-deficient mice. Mol. Cell. Biol. 2000, 20, 5479–5489.
(6) You-Ten, K. E.; Muise, E. S.; Itie, A.; Michaliszyn, E.; Wagner, J.;
Jothy, S.; Lapp, W. S.; Tremblay, M. L. Impaired bone marrow
microenvironment and immune function in T cell protein tyrosine
phosphatase-deficient mice. J. Exp. Med. 1997, 186, 683–693.
(7) Bliska, J. B.;Guan, K. L.;Dixon, J. E.;Falkow, S. TyrosinePhosphate
Hydrolysis of Host Proteins by an Essential Yersinia Virulence
Determinant. Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 1187–1191.
(16) Chen, Y. T.; Seto, C. T. Parallel synthesis of a library of bidentate
protein tyrosine phosphatase inhibitors based on the R-ketoacid
motif. Bioorg. Med. Chem. 2004, 12, 3289–3298.
(17) Puius, Y. A.; Zhao, Y.; Sullivan, M.; Lawrence, D. S.; Almo, S. C.;
Zhang, Z.-Y. Identification of a second aryl phosphate-binding site
in protein-tyrosine phosphatase 1B: a paradigm for inhibitor
design. Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 13420–13425.
(18) Hu, X.; Vujanac, M.; Stebbins, C. E. Computational analysis of
tyrosine phosphatase inhibitor selectivity for the virulence factors
YopH and SptP. J. Mol. Graphics Modell. 2004, 23, 175–187.
(19) Barnish, I. T.; Cross, P. E.; Danilewicz, J. C.; Dickinson, R. P.;
Stopher, D. A. Promotion of carbohydrate oxidation in the heart
by some phenylglyoxylic acids. J. Med. Chem. 1981, 24, 399–404.
(20) See the Supporting Information.
(21) Xin,Z.;Liu,G.;Abad-Zapatero,C.;Pei,Z.;Szczepankiewick, B. G.; Li,
X.; Zhang, T.; Hutchins, C. W.; Hajduk, P. J.; Ballaron, S. J.; Stashko,
M. A.; Lubben, T. H.; Trevillyan, J. M.; Jirousek, M. R. Identification
of a mono-based, cell permeable, selective inhibitor of protein tyrosine
phosphatase 1B. Bioorg. Med. Chem. Lett. 2003, 13, 3947–3950.
(22) Trott, O.; Olson, A. J. AutoDock Vina: improving the speed and
accuracy of docking with a new scoring function, efficient optimi-
zation, and multithreading. J. Comput. Chem. 2010, 31, 455–461.
(23) Iversen, L. F.; Moller, K. B.; Pedersen, A. K.; Peters, G. H.; Petersen,
A. S.; Andersen, H. S.; Branner, S.; Mortensen, S. B.; Moller,
N. P. H. Structure Determination of T cell protein-tyrosine phos-
phatase. J. Biol. Chem. 2002, 277, 19982–19990.
(24) Barford, D.; Flint, A. J.; Tonks, N. K. Crystal Structure of
Human Protein Tyrosine Phosphatase 1B. Science 1994, 263,
1397–1404.