K
Z.-Y. Gu et al.
Special Topic
Synthesis
(5) Constable, D. J. C.; Dunn, P. J.; Hayler, J. D.; Humphrey, G. R.;
Leazer, J. J. L.; Linderman, R. J.; Lorenz, K.; Manley, J.; Pearlman,
B. A.; Wells, A.; Zaks, A.; Zhang, T. Y. Green Chem. 2007, 9, 411.
(6) (a) Ishihara, K.; Ohara, S.; Yamamoto, H. J. Org. Chem. 1996, 61,
4196. (b) Al-Zoubi, R. M.; Marion, O.; Hall, D. G. Angew. Chem.
Int. Ed. 2008, 47, 2876. (c) Ishihara, K.; Lu, Y. Chem. Sci. 2016, 7,
1276. (d) Noda, H.; Furutachi, M.; Asada, Y.; Shibasaki, M.;
Kumagai, N. Nat. Chem. 2017, 9, 571. (e) Wang, K.; Lu, Y.;
Ishihara, K. Chem. Commun. 2018, 54, 5410.
(7) (a) Imada, Y.; Alper, H. J. Org. Chem. 1996, 61, 6766. (b) Imada,
Y.; Vasapollo, G.; Alper, H. J. Org. Chem. 1996, 61, 7982.
(c) Uenoyama, Y.; Fukuyama, T.; Nobuta, O.; Matsubara, H.; Ryu,
I. Angew. Chem. Int. Ed. 2005, 44, 1075. (d) Li, Y.; Alper, H.; Yu, Z.
Org. Lett. 2006, 8, 5199. (e) Driller, K. M.; Prateeptongkum, S.;
Jackstell, R.; Beller, M. Angew. Chem. Int. Ed. 2011, 50, 537.
(f) Gao, B.; Huang, H. Org. Lett. 2017, 19, 6260. (g) Sha, F.; Alper,
H. ACS Catal. 2017, 7, 2220.
(8) (a) Modern Carbonylation Methods; Kollar, L., Ed.; Wiley-VCH:
Weinheim, 2008. (b) Transition Metal Catalyzed Carbonylation
Reactions: Carbonylative Activation of C–X Bonds; Beller, M.;
Wu, X.-F., Ed.; Springer: Amsterdam, 2013.
(9) (a) Schoenberg, A.; Heck, R. F. J. Org. Chem. 1974, 39, 5.
(b) Eriksson, J.; Aaberg, O.; Laangstroem, B. Eur. J. Org. Chem.
2007, 455. (c) Lagerlund, O.; Mantel, M. L. H.; Larhed, M. Tetra-
hedron 2009, 65, 7646. (d) Chen, B.; Wu, X.-F. J. Catal. 2020, 383,
160.
(10) (a) Ferguson, J.; Zeng, F.; Alwis, N.; Alper, H. Org. Lett. 2013, 15,
1998. (b) Grigorjeva, L.; Daugulis, O. Org. Lett. 2014, 16, 4688.
(c) Li, W.; Liu, C.; Zhang, H.; Ye, K.; Zhang, G.; Zhang, W.; Duan,
Z.; You, S.; Lei, A. Angew. Chem. Int. Ed. 2014, 53, 2443.
(d) Calleja, J.; Pla, D.; Gorman, T. W.; Domingo, V.; Haffemayer,
B.; Gaunt, M. J. Nat. Chem. 2015, 7, 1009. (e) Wang, C.; Zhang, L.;
Chen, C.; Han, J.; Yao, Y.; Zhao, Y. Chem. Sci. 2015, 6, 4610.
(f) Zhu, J.; Gao, B.; Huang, H. Org. Biomol. Chem. 2017, 15, 2910.
(g) Liu, S.; Wang, H.; Dai, X.; Shi, F. Green Chem. 2018, 20, 3457.
(h) Zeng, L.; Li, H.; Tang, S.; Gao, X.; Deng, Y.; Zhang, G.; Pao, C.-
W.; Chen, J.-L.; Lee, J.-F.; Lei, A. ACS Catal. 2018, 8, 5448.
(11) (a) Fang, X.; Jackstell, R.; Beller, M. Angew. Chem. Int. Ed. 2013,
52, 14089. (b) Liu, H.; Yan, N.; Dyson, P. J. Chem. Commun. 2014,
50, 7848. (c) Liu, J.; Li, H.; Spannenberg, A.; Franke, R.; Jackstell,
R.; Beller, M. Angew. Chem. Int. Ed. 2016, 55, 13544. (d) Zhou, X.;
Zhang, G.; Gao, B.; Huang, H. Org. Lett. 2018, 20, 2208.
Cui, X.; Zhang, X. P.; Reijerse, E. J.; DeBeer, S.; van Schooneveld,
M. M.; Pfaff, F. F.; Ray, K.; de Bruin, B. J. Am. Chem. Soc. 2015,
137, 5468. (h) Kuijpers, P. F.; van der Vlugt, J. I.; Schneider, S.; de
Bruin, B. Chem. Eur. J. 2017, 23, 13819. (i) Li, C.; Lang, K.; Lu, H.;
Hu, Y.; Cui, X.; Wojtas, L.; Zhang, X. P. Angew. Chem. Int. Ed.
2018, 57, 16837. (j) Shimbayashi, T.; Sasakura, K.; Eguchi, A.;
Okamoto, K.; Ohe, K. Chem. Eur. J. 2019, 25, 3156.
(14) (a) Gu, Z.-Y.; Li, J.-H.; Wang, S.-Y.; Ji, S.-J. Chem. Commun. 2017,
53, 11173. (b) Gu, Z.-Y.; Liu, Y.; Wang, F.; Bao, X.; Wang, S.-Y.; Ji,
S.-J. ACS Catal. 2017, 7, 3893. (c) Zhang, Z.; Huang, B.; Qiao, G.;
Zhu, L.; Xiao, F.; Chen, F.; Fu, B.; Zhang, Z. Angew. Chem. Int. Ed.
2017, 56, 4320. (d) Gu, Z.-Y.; Zhang, R.; Wang, S.-Y.; Ji, S.-J. Chin.
J. Chem. 2018, 36, 1011. (e) Lang, K.; Torker, S.; Wojtas, L.;
Zhang, X. P. J. Am. Chem. Soc. 2019, 141, 12388.
(15) (a) Bennett, R. P.; Hardy, W. B. J. Am. Chem. Soc. 1968, 90, 3295.
(b) La Monica, G.; Cenini, S. J. Organomet. Chem. 1981, 216, C35.
(c) Ren, L.; Jiao, N. Chem. Commun. 2014, 50, 3706. (d) Zhang, Z.;
Xiao, F.; Huang, B.; Hu, J.; Fu, B.; Zhang, Z. Org. Lett. 2016, 18,
908. (e) Zhao, J.; Li, Z.; Song, S.; Wang, M.-A.; Fu, B.; Zhang, Z.
Angew. Chem. Int. Ed. 2016, 55, 5545. (f) Zhao, J.; Li, Z.; Yan, S.;
Xu, S.; Wang, M. A.; Fu, B.; Zhang, Z. Org. Lett. 2016, 18, 1736.
(g) Chow, S. Y.; Odell, L. R. J. Org. Chem. 2017, 82, 2515. (h) Li, Z.;
Xu, S.; Huang, B.; Yuan, C.; Chang, W.; Fu, B.; Jiao, L.; Wang, P.;
Zhang, Z. J. Org. Chem. 2019, 84, 9497. (i) Schembri, L. S.;
Eriksson, J.; Odell, L. R. J. Org. Chem. 2019, 84, 6970. (j) Feng, J.;
Zhang, Z.; Li, X.; Zhang, Z. Synlett 2020, 31, 1040. (k) Zhang, Y.;
Yin, Z.; Wu, X.-F. Org. Lett. 2019, 21, 3242. (l) Chen, B.; Wu, X.-F.
J. Catal. 2020, 383, 160. (m) Yuan, Y.; Chen, B.; Zhang, Y.; Wu, X.-
F. J. Org. Chem. 2020, 85, 5733.
(16) (a) Yuan, S.-W.; Han, H.; Li, Y.-L.; Wu, X.; Bao, X.; Gu, Z.-Y.; Xia,
J.-B. Angew. Chem. Int. Ed. 2019, 58, 8887. (b) Li, Y.-L.; Gu, Z.-Y.;
Xia, J.-B. Synlett 2021, 32, 7.
(17) McGrath, N. A.; Brichacek, M.; Njardarson, J. T. J. Chem. Educ.
2010, 87, 1348.
(18) (a) D’Auria, M.; Racioppi, R.; Viggiani, L.; Zanirato, P. Eur. J. Org.
Chem. 2009, 932. (b) Ferrini, S.; Cini, E.; Taddei, M. Synlett 2013,
24, 491.
(19) (a) Sundberg, R. J. Indoles; Academic Press: San Diego, 1996.
(b) Inman, M.; Moody, C. J. Chem. Sci. 2013, 4, 29. (c) Patil, S. A.;
Patil, R.; Miller, D. D. Curr. Med. Chem. 2011, 18, 615.
(20) Kulkarni, J. S.; Metha, A. A.; Santani, D. D.; Goyal, R. K. Pharm.
Res. 2002, 46, 101.
(12) (a) Shi, R.; Zhang, H.; Lu, L.; Gan, P.; Sha, Y.; Zhang, H.; Liu, Q.;
Beller, M.; Lei, A. Chem. Commun. 2015, 51, 3247. (b) Peng, J.-B.;
Geng, H.-Q.; Li, D.; Qi, X.; Ying, J.; Wu, X.-F. Org. Lett. 2018, 20,
4988.
(21) (a) Effenberger, F.; Gleiter, R. Chem. Ber. 1964, 97, 1576.
(b) Chmielewski, M.; Kaluza, Z. J. Org. Chem. 1986, 51, 2395.
(c) Cossio, F. P.; Roa, G.; Lecea, B.; Ugalde, J. M. J. Am. Chem. Soc.
1995, 117, 12306. (d) Chmielewski, M.; Kałuża, Z.; Furman, B.
Chem. Commun. 1996, 2689.
(22) The transition state leading to the formation of -lactam inter-
mediate is located as TS3c′, which is much higher in energy
than the pathway via TS3a′ (Figure 1).
(23) After the formation of the isocyanate intermediate, a possible
Pd(II)-catalyzed pathway to afford the final product is also con-
sidered (Figure S2 in Supporting Information). The main mech-
anistic difference for Pd(II)-catalyzed pathway is that the
acetate ligand could serve as a proton shuttle to assist the H-
migration to yield the final product.
(13) (a) Shen, M.; Lesli, B. E.; Driver, T. G. Angew. Chem. Int. Ed. 2008,
47, 5056. (b) Dequirez, G.; Pons, V.; Dauban, P. Angew. Chem. Int.
Ed. 2012, 51, 7384. (c) Nguyen, Q.; Sun, K.; Driver, T. G. J. Am.
Chem. Soc. 2012, 134, 7262. (d) Olivos Suarez, A. I.; Lyaskovskyy,
V.; Reek, J. N.; van der Vlugt, J. I.; de Bruin, B. Angew. Chem. Int.
Ed. 2013, 52, 12510. (e) Intrieri, D.; Zardi, P.; Caselli, A.; Gallo, E.
Chem. Commun. 2014, 50, 11440. (f) Lu, H.; Li, C.; Jiang, H.;
Lizardi, C. L.; Zhang, X. P. Angew. Chem. Int. Ed. 2014, 53, 7028.
(g) Goswami, M.; Lyaskovskyy, V.; Domingos, S. R.; Buma, W. J.;
Woutersen, S.; Troeppner, O.; Ivanovic-Burmazovic, I.; Lu, H.;
© 2021. Thieme. All rights reserved. Synthesis 2021, 53, A–K