M.-S. Chen et al. / Polyhedron 29 (2010) 2454–2461
2461
[10] L. Pan, H.M. Liu, X.G. Lei, X.Y. Huang, D.H. Olson, N.J. Turro, J. Li, Angew. Chem.,
Int. Ed. 42 (2003) 542.
[11] X.L. Wang, C. Qin, E.B. Wang, Y.G. Li, C.W. Hu, L. Xu, Chem. Commun. (2004)
Na2L ligand, and the slight red-shifts of 3 and 4 compared to that of
Na2L probably result from the fact that the coordination of L to
Zn(II)/Cd(II) increases the ligand conformational rigidity and thus
reduces the non-radiative energy loss [42–44].
378.
[12] S. Kitagawa, R. Kitaura, S.-i. Noro, Angew. Chem., Int. Ed. 43 (2004) 2334.
[13] J. Xu, Z.S. Bai, T.-a. Okamura, M.S. Chen, W.Y. Sun, N. Ueyama, Polyhedron 28
(2009) 2480.
4. Conclusions
[14] Q. Chu, G.X. Liu, T.-a. Okamura, Y.Q. Huang, W.Y. Sun, N. Ueyama, Polyhedron
27 (2008) 812.
[15] Z.S. Bai, Z.P. Qi, Y. Lu, Q. Yuan, W.Y. Sun, Cryst. Growth Des. 8 (2008) 1924.
[16] Z.S. Bai, J. Xu, T.-a. Okamura, M.S. Chen, W.Y. Sun, N. Ueyama, Dalton Trans.
In summary, we have successfully synthesized four new hybrids
based on a new pyridine- and carboxylate-containing ligand 4-
(isonicotinamido)phthalic acid with corresponding metal salts.
The results revealed that it is promising to build up specific struc-
tures via combining transition metals and pyridyl-carboxylate li-
gands. The varied coordination modes of the ligand found in the
present work prove that it is a useful building block in the prepa-
ration of novel hybrid frameworks with potential magnetic and
luminescent properties.
(2009) 2528.
[17] M.S. Chen, Z.S. Bai, Z. Su, S.S. Chen, W.Y. Sun, Inorg. Chem. Commun. 12 (2009)
530.
[18] SAINT, Program for Data Extraction and Reduction, Bruker AXS, Inc., Madison,
WI, 2001.
[19] G.M. Sheldrick,
University of Göttingen, Germany, 1997.
[20] G.M. Sheldrick, HELXL-97, Program for Refinement of Crystal Structures,
SHELXS-97, Program for the Solution of Crystal Structures,
S
University of Göttingen, Germany, 1997.
[21] SIR92: A. Altomare, M.C. Burla, M. Camalli, M. Cascarano, C. Giacovazzo, A.
Guagliardi, G. Polidori, J. Appl. Crystallogr. 27 (1994) 435.
[22] DIRFID 94: P.T. Beurskens, G. Admiraal, G. Beurskens, W.P. Bosman, R. de
Gelder, R. Israel, J.M.M. Smits, The DIRFID-94 Program System; Technical
Report of the Crystallography Laboratory, University of Nijmegen, Nijmegen,
The Netherlands, 1994.
[23] N.W. Ockwig, O. Delgado-Friederichs, M. O’Keeffe, O.M. Yaghi, Acc. Chem. Res.
38 (2005) 176.
[24] O.M. Yaghi, H. Li, C. Davis, D. Richardson, T.L. Groy, Acc. Chem. Res. 31 (1998)
474.
Acknowledgments
This work was financially supported by the National Natural
Science Foundation of China (Grant Nos. 20731004 and
20721002) and the National Basic Research Program of China
(Grant Nos. 2007CB925103 and 2010CB923303).
[25] S.R. Batten, R. Robson, Angew. Chem., Int. Ed. 37 (1998) 1460.
[26] K.E. Holmes, P.F. Kelly, M.R.J. Elsegood, Dalton Trans. (2004) 3488.
[27] P.S. Wang, C.N. Moorefield, M. Panzer, G.R. NewKome, Chem. Commun. (2005)
465.
Appendix A. Supplementary data
[28] M. O’Keeffe, M. Eddaoudi, H.L. Li, T. Reineke, O.M. Yaghi, J. Solid State Chem.
152 (2000) 3.
CCDC 760534, 760535, 760536, and 7605347 contain the sup-
plementary crystallographic data for 1, 2, 3 and 4. These data can
tre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223 336
033; or e-mail: deposit@ccdc.cam.ac.uk. Supplementary data asso-
ciated with this article can be found, in the online version, at
[29] N.L. Rosi, M. Eddaoudi, J. Kim, M. O’Keeffe, O.M. Yaghi, Angew. Chem., Int. Ed.
41 (2002) 284.
}
[30] O.V. Dolomanov, A.J. Blake, N.R. Charmpness, M. Schroder, J. Appl. Crystallogr.
36 (2003) 1283.
[31] M.E. Fisher, Am. J. Phys. (Paris) 32 (1964) 343.
[32] C.J. O’Connor, Prog. Inorg. Chem. 29 (1982) 203.
[33] R.H. Wang, D.Q. Yuan, F.L. Jiang, L. Han, S. Gao, M.C. Hong, Eur. J. Inorg. Chem.
(2006) 1649.
[34] J. Li, S.B. Tang, L. Lu, H.C. Zeng, J. Am. Chem. Soc. 129 (2007) 9401.
[35] W. Chen, Q. Yue, C. Chen, H.M. Yuan, W. Xu, J.S. Chen, S.N. Wang, Dalton Trans.
(2003) 28.
[36] H.S. Ra, K.M. Ok, P.S. Halasyamani, J. Am. Chem. Soc. 125 (2003) 7764.
[37] J.S.O. Evans, S. Bénard, P. Yu, R. Clément, Chem. Mater. 13 (2001) 3813.
[38] L. Song, S.W. Du, J.D. Lin, H. Zhou, T. Li, Cryst. Growth Des. 7 (2007) 2268.
[39] A. Vogler, H. Kunkely, Coord. Chem. Rev. 250 (2006) 1622.
[40] R.Q. Fan, D.S. Zhu, Y. Mu, G.H. Li, Y.L. Yang, Q. Su, S.H. Feng, Eur. J. Inorg. Chem.
(2004) 4891.
[41] L.L. Wen, Y.Z. Li, Z.D. Lu, J.G. Lin, C.Y. Duan, Q.J. Meng, Cryst. Growth Des. 6
(2006) 530.
[42] U.H.F. Bunz, Chem. Rev. 100 (2000) 1605.
[43] W.Y. Yang, H. Schmider, Q.G. Wu, Y.S. Zhang, S.N. Wang, Inorg. Chem. 39
(2000) 2397.
[44] Y.B. Chen, J. Zhang, J.K. Cheng, Y. Kang, Z.J. Li, Y.G. Yao, Inorg. Chem. Commun. 7
(2004) 1139.
References
´
[1] J. Mrozinski, Coord. Chem. Rev. 249 (2005) 2534.
[2] J.L. Atwood, Nat. Mater. 1 (2002) 91.
[3] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, O.M. Yaghi,
Science 295 (2002) 469.
[4] R.Q. Zou, H. Sakurai, S. Han, R.Q. Zhong, Q. Xu, J. Am. Chem. Soc. 129 (2007)
8402.
[5] X.J. Kong, Y.P. Ren, L.S. Long, Z.P. Zheng, R.B. Huang, L.S. Zheng, J. Am. Chem.
Soc. 129 (2007) 7016.
[6] N. Guillou, C. Livage, W. van Beek, M. Noguès, G. Férey, Angew. Chem., Int. Ed.
42 (2003) 643.
[7] S. Ghosh, P.S. Mukherjee, Dalton Trans. (2007) 2542.
[8] M. Dan, C.N.R. Rao, Angew. Chem., Int. Ed. 45 (2006) 281.
[9] A.Y. Robin, K.M. Fromm, Coord. Chem. Rev. 250 (2006) 2127.