562
J.-D. Lin et al. / Inorganic Chemistry Communications 12 (2009) 558–562
[4] S.R. Batten, B.F. Hoskins, B. Moubaraki, S. Murray, K.R. Robson, Chem. Commun.
For 2, the experimental
vmT value for per Ni ion at room tem-
(2000) 1095.
perature is 1.11 cm3 molꢁ1 K and increase slowly to a maximum
of 1.16 cm3 molꢁ1 K at 22.5 K. Below 22.5 K, there is a clear de-
crease to approximately 0.53 cm3 molꢁ1 K at 2 K. Although the
structure of 2 is two-dimensional, from the magnetic point of view,
it can be analyzed with a mononuclear model owing to the long
Niꢀ ꢀ ꢀNi distances between the organic linkers. The resulting mag-
netic susceptibility is given by Eq. (1), where h represents all the
weak interactions and the other symbols have their usual mean-
ings. The best fitting gave the parameters g = 2.12, D = 12.67 K,
[5] N.W. Ockwig, O. Delgado-Fridrichs, M. O’Keeffe, O.M. Yaghi, Acc. Chem. Res. 38
(2005) 176.
[6] V.A. Blatov, L. Calucci, D.M. Proserpio, J. Am. Chem. Soc. 127 (2005) 1504.
[7] D. Bradshaw, J.B. Claridge, E.J. Cussen, T.J. Prior, M.J. Rosseinsky, Acc. Chem.
Res. 38 (2005) 273.
[8] S.R. Batten, CrystEngComm 3 (2001) 67.
[9] O.M. Yaghi, M. O’Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, J. Kim, Nature
423 (2003) 705.
[10] R.J. Hill, D.-L. Long, N.R. Champness, P. Hubberstey, M. Schröder, Acc. Chem.
Res. 38 (2005) 337.
[11] A.J. Blake, N.R. Champness, P. Hubberstey, W.S. Li, M.A. Withersby, M.
Schröder, Coord. Chem. Rev. 183 (1999) 117.
[12] D.B. Leznoff, B.Y. Xue, R.J. Batchelor, F.W.B. Einstein, B. Patrick, Inorg. Chem. 40
(2001) 6026.
h = 0.747 Kꢁ1 and the agreement factor R =
R vmT)obsd –
vmT value be-
[(
(v
mT)calcd]2/
R
(v
mT)2obsd is 1.3 ꢂ 10ꢁ4. The decrease of
low 22.5 K might be mainly attributed to the presence of zero-field
splitting (ZFS).
[13] M. Munakata, L.P. Wu, T. Kuroda-Sowa, Adv. Inorg. Chem. 46 (1999) 173.
[14] A.M. Beatty, Coord. Chem. Rev. 246 (2003) 131.
[15] O.M. Yaghi, H. Li, T.L. Groy, Inorg. Chem. 36 (1997) 4292.
[16] M. Fujita, Y.J. Kwon, S. Washizu, K. Ogura, J. Am. Chem. Soc. 116 (1994)
1151.
[17] C.L. Chen, C.Y. Su, Y.P. Cai, H.X. Zhang, A.W. Xu, B.S. Kang, H.C. Zur Loye, Inorg.
Chem. 42 (2003) 3738.
[18] M. Du, Z.H. Zhang, L.F. Tang, X.G. Wang, X.J. Zhao, S.R. Batten, Chem. Eur. J. 13
(2007) 2578.
ꢀ
ꢁ
2Ng2b2 2kT=D ꢁ 2kT expðꢁD=kTÞ=D þ expðꢁD=kTÞ
vm
¼
ð1Þ
3kðT ꢁ hÞ
1 þ 2 expðꢁD=kTÞ
In summary, we have successfully obtained two nickel-organic
frameworks using mixed-ligand of H3BTC and bix (or mbix) under
hydrothermal conditions. Compounds 1 and 2 both exhibit a 3D
supramolecular network with a novel topology formed by hydro-
[19] L.L. Wen, Y.Z. Li, Z.D. Lu, J.G. Lin, C.Y. Duan, Q.J. Meng, Cryst. Growth Des. 6
(2006) 530.
[20] L.L. Wen, D.B. Dong, C.Y. Duan, Y.Z. Li, Z.F. Tian, Q.J. Meng, Inorg. Chem. 44
(2005) 7161.
[21] L.L. Wen, Z.D. Lu, J.G. Lin, Z.F. Tian, H.Z. Zhu, Q.J. Meng, Cryst. Growth Des. 7
(2007) 93.
gen-bonging interactions or
p p stacking interactions. The differ-
ꢀ ꢀ ꢀ
ent symmetries of bix and mbix play an important role in tuning
the formation of the network structures of 1 and 2. The magnetic
study shows that 1 exhibits an overall ferromagnetic interaction
between the Ni2+ ions whereas 2 presents strong zero-field split-
ting (ZFS) based on the magnetic analysis result.
[22] Z.D. Lu, L.L. Wen, Z.P. Ni, Y.Z. Li, H.Z. Zhu, Q.J. Meng, Cryst. Growth Des. 7
(2007) 268.
[23] Y.Y. Liu, J.F. Ma, J. Yang, Z.M. Su, Inorg. Chem. 46 (2007) 3027.
[24] Z.F. Tian, J.G. Lin, Y. Su, L.L. Wen, Y.M. Liu, H.Z. Zhu, Q.J. Meng, Cryst. Growth
Des. 7 (2007) 1863.
[25] X.Y. Duan, Y.Z. Li, Y. Su, S.Q. Zang, C.J. Zhu, Q.J. Meng, CrystEngComm 9 (2007)
758.
Acknowledgements
[26] Y. Qi, F. Luo, Y.X. Che, J.M. Zheng, Cryst. Growth Des. 8 (2008) 606.
[27] J.D. Lin, J.W. Cheng, S.W. Du, Cryst. Growth Des. 8 (2008) 3345.
[28] B.F. Hoskins, R. Robson, D.A. Slizys, J. Am. Chem. Soc. 119 (1997) 2952.
[29] Molecular Structure Corporation & Rigaku, 2000. CrystalClear, Version 1.36.
MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA, and Rigaku
Corporation, 3-9-12 Akishima, Tokyo, Japan.
[30] SHELXTL (version 5.10), Siemens Analytical X-ray Instruments Inc., Madison,
WI, 1994.
[31] E.Y. Choi, Y.U. Kwon, Inorg. Chem. 44 (2005) 538.
[32] X.J. Li, R. Cao, W.H. Bi, Y.Q. Wang, Y.L. Wang, X. Li, Z.G. Guo, Cryst. Growth Des.
5 (2005) 1651.
This work was supported by the Grants from the State Key Lab-
oratory of Structural Chemistry, Fujian Institute of Research on the
Structure of Matter, Chinese Academy of Sciences (CAS, SZD08002-
2), National Basic Research Program of China (973 Program,
2007CB815306), the National Natural Science Foundation of China
(20733003 and 20673117) and Knowledge Innovation Program of
the Chinese Academy of Sciences.
[33] C. Ma, C. Chen, Q. Liu, D. Liao, L. Li, L. Sun, New J. Chem. 27 (2003) 890.
[34] L.M. Duan, F.T. Xie, X.Y. Chen, Y. Che, Y.K. Lu, P. Cheng, J.Q. Xu, Cryst. Growth
Des. 6 (2006) 1101.
Appendix A. Supplementary material
[35] X.L. Hong, Y.Z. Li, H.M. Hu, Y. Pan, J.F. Bai, X.Z. You, Cryst. Growth Des. 6 (2006)
1221.
[36] O.V. Dolomanov, A.J. Blake, N.R. Champness, M. Schröder, J. Appl. Crystallogr.
36 (2003) 1283.
Supplementary data associated with this article can be found, in
[37] Y.Q. Sun, J. Zhang, G.Y. Yang, Chem. Commun. (2006) 1947.
[38] D.R. Xiao, R. Yuan, Y.Q. Chai, E.B. Wang, Eur. J. Inorg. Chem. (2008) 2610.
[39] J.J. Jiang, Y.R. Liu, R. Yang, M. Pan, R. Cao, C.Y. Su, CrystEngComm 10 (2008)
1147.
[41] M.H. Bi, G.H. Li, J. Hua, Y.L. Liu, X.M. Liu, Y.W. Hu, Z. Shi, S.H. Feng, Cryst.
Growth Des. 7 (2007) 2066.
References
[1] G.J. Halder, C.J. Kepert, B. Moubaraki, K.S. Murray, J.D. Cashion, Science 298
(2002) 1762.
[2] C.N.R. Rao, S. Natarajan, R. Vaidhyanathan, Angew. Chem., Int. Ed. 43 (2004)
1466.
[42] Q.L. Wang, L.H. Yua, D.Z. Liao, S.P. Yan, Z.H. Jiang, P. Cheng, Helv Chim Acta 86
(2003) 2441.
[3] O.M. Yaghi, H. Li, C. Davis, D. Richardson, T.L. Groy, Acc. Chem. Res. 31 (1998)
474.