C O M M U N I C A T I O N S
Scheme 5
Scheme 6
Scheme 7a
edented 1,4-dipole of s-trans-methylene(vinyl)oxonium II. Neverthe-
less, in view of the highly diastereoselective outcome, the resulting
cycloadducts arise from an initial [3 + 2] cycloaddition of R-carbonyl
ylide II′′ followed by a ring expansion. The concept of a formal [4 +
2] cycloaddition on an s-trans-heterodiene should be helpful in the
design of new synthetic methods.
Acknowledgment. The authors thank the National Science
Council, Taiwan, for support of this work.
Supporting Information Available: Experimental procedures,
characterization data for new compounds, and X-ray crystallographic
data (CIF) for compounds 3a and 5e. This material is available free of
References
(1) For reviews, see: (a) Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.;
Vassilikogiannakis, G. Angew. Chem., Int. Ed. 2002, 41, 1668. (b) Pindur,
U.; Lutz, G.; Otto, C. Chem. ReV. 1993, 93, 741. (c) Boger, D. L. Chem.
ReV. 1986, 86, 781. (d) Boger, D. L. J. Heterocycl. Chem. 1996, 33, 1519.
(e) Boger, D. L. Tetrahedron 1983, 39, 2869.
(2) (a) Houk, K. N.; Lin, Y.-T.; Brown, F. K. J. Am. Chem. Soc. 1986, 108,
554. (b) Goldstein, E.; Beno, B.; Houk, K. N. J. Am. Chem. Soc. 1996,
118, 6036.
(3) The calculations were performed using the B3LYP method with the
LANL2DZ basis set (B3LYP/LANL2DZ).
(4) For reviews, see: (a) Patil, N. T.; Yamamoto, Y. Chem. ReV. 2008, 108,
3395. (b) Abu Sohel, S. Md.; Liu, R.-S. Chem. Soc. ReV. 2009, 38, 2269.
(5) For s-cis-oxoniums I, their [4 + 2] cycloaddition intermediates V do not
give anti-Bredt oxacycles VI; these hypothetical intermediates undergo
facile rearrangement to dihydronaphthalenes5a,b or 8-oxabicyclo[3.2.1]-
octanes.6 See: (a) Asao, N.; Kasahara, T.; Yamamoto, Y. Angew. Chem.,
Int. Ed. 2003, 42, 3504. (b) Asao, N.; Aikawa, H.; Yamamoto, Y. J. Am.
Chem. Soc. 2004, 126, 7458. (c) Hsu, Y.-C.; Ting, C.-M.; Liu, R.-S. J. Am.
Chem. Soc. 2009, 131, 2090. (d) Shu, X.-Z.; Zhao, S.-C.; Ji, K.-G.; Zheng,
Z.-J.; Liu, X.-Y.; Liang, Y.-M. Eur. J. Org. Chem. 2009, 117.
a Reagents: (i) Pd-C/H2 (1 atm), 1:1 1,4-dioxane/DCM, 25 °C, 16 h,
82% (ii) m-CPBA (1.5 equiv), NaHCO3 (3 equiv), DCM, 1.5 h, 76% (iii)
ICI (1.1 equiv), wet DCM, 1 h, 0 °C, 63%.
its formation may imply a gold-containing carbene intermediate III,
as depicted in Scheme 6.
It is possible that compounds 2 are produced from either an initial
[3 + 2] cycloaddition to R-carbonyl ylide II′′ 6 or from a [4 + 2]
cycloaddition on s-trans-oxonium II′.5 We envisage that the [3 +
2] path would enable the oxy group to approach the enol ether
closely, rendering great diastereocontrol of the cycloadducts. As
shown in structure II′′, the enol ether approaches the carbonyl ylide
from the less-hindered endo face and away from the proximate oxy
group (OR) to give gold carbenium III. The formation of compound
7 from 1-oxy-5-yne 1q might imply intermediate III, whose carbene
functionality would activate a methoxy C-H insertion.11 An
alternative stepwise [4 + 2] cycloaddition would make it difficult
to rationalize the stereodirecting effect of the oxy group.
Importantly, this catalysis requires 1-oxo-5-ynes 1 bearing an
oxy group12,13 to give the desired oxacycles 2, with R ) MOM or
Ac being more efficient than R ) TMS. We hypothesize that MOM
assists a 1,2-alkyl migration to form stable oxonium species IV,
which is subsequently convertible to the formal “[4 + 2] cycload-
duct” 2; we disparage the bridgehead oxonium IV′ because of its
highly strained skeleton (see Scheme 1, species D). Verification of
this hypothesis needs additional work in the future.
(6) For selected examples of [3 + 2] cycloadditions, see: (a) Kusama, H.; Ishida,
K.; Funami, H.; Iwasawa, N. Angew. Chem., Int. Ed. 2008, 47, 4903. (b)
Li, G.; Huang, X.; Zhang, L. J. Am. Chem. Soc. 2008, 130, 6944. (c) Oh,
C. H.; Lee, J. H.; Lee, S. J.; Kim, J. I.; Hong, C. S. Angew. Chem., Int. Ed.
2008, 47, 7505. (d) Oh, C. H.; Lee, S. M.; Hong, C. S. Org. Lett. 2010,
12, 1308.
(7) For other reactions of s-cis-oxonium I, see: (a) Liu, F.; Yu, Y.; Zhang, J.
Angew. Chem., Int. Ed. 2009, 48, 5505. (b) Jin, T.; Yamamoto, Y. Org.
Lett. 2007, 9, 5259. (c) Jin, T.; Yamamoto, Y. Org. Lett. 2008, 10, 3137.
(8) Miki, K.; Uemura, S.; Ohe, K. Chem. Lett. 2005, 34, 1068.
(9) X-ray crystallographic data for compounds 3a and 5e are provided in the
Supporting Information.
(10) (a) Wu¨nsch, B.; Zott, M.; Ho¨fner, G. Arch. Pharm. 1992, 325, 733. (b)
Wu¨nsch, B.; Zott, M.; Ho¨fner, G. Arch. Pharm. 1992, 325, 823. (c) Maurin,
C.; Bailly, F.; Cortelle, P. Curr. Med. Chem. 2003, 10, 1795. (d) Dupont,
R.; Jeanson, L.; Mouscadet, J.-F.; Cotelle, P. Bioorg. Med. Chem. Lett.
2001, 11, 3175.
(11) (a) Hashmi, A. S. K.; Scha¨fer, S.; Wo¨lfle, M.; Gil, C. D.; Fischer, P.;
Laguna, A.; Blanco, M. C.; Gimeno, M. C. Angew. Chem., Int. Ed. 2007,
46, 6184. (b) Horino, Y.; Yamamoto, T.; Ueda, K.; Kuroda, S.; Toste, F. D.
J. Am. Chem. Soc. 2009, 131, 2809. (c) Cui, L.; Peng, Y.; Zhang, L. J. Am.
Chem. Soc. 2009, 131, 8394. (d) Bhunia, S.; Liu, R.-S. J. Am. Chem. Soc.
2008, 130, 16488.
(12) For internal alkyne 9a, we observed a distinct 7-endo-dig cyclization to
give indenyl ketone 10a in 45% yield. The steric interaction between gold
and n-butyl destabilizes intermediate II′. For the acetoxy derivative 9b,
we obtained 10b stereoselectively from an initial 1,3-acetoxy shift followed
by a [4 + 2] cycloaddition on benzopyrilium (see ref 13).
Scheme 7 shows the use of this catalysis for a stereoselective
synthesis of highly oxygenated molecules. Stereocontrolled func-
tionalization of 2a′ at the bridgehead olefin was readily achieved
via (i) Pd/C hydrogenation and (ii) m-CPBA epoxidation from the
open face, giving 8a and 8b in 82 and 76% yield, respectively.
Treatment of 2a′ with ICl in wet CH2Cl2 gave hemiketal 8c (63%)
as a single diastereomer.
In summary, we have reported a highly stereoselective Au-catalyzed
synthesis of 9-oxabicyclo[3.3.1]nona-4,7-dienes from diverse 1-oxo-
5-ynes bearing an indispensable 4-oxy group. Formation of these highly
strained anti-Bredt oxacycles reveals the workability of an unprec-
(13) Teng, T.-M.; Liu, R.-S. J. Am. Chem. Soc. 2010, 132, 9298.
JA106493H
9
J. AM. CHEM. SOC. VOL. 132, NO. 36, 2010 12567