Y. Ishibashi, K. Miyata, M. Kitamura
SHORT COMMUNICATION
[5]
For the theoretical calculation of the double bond character of
N–C(O) and N–S(O) in N-methoxycarbonyl- and N-methylsul-
fonyl-protected pyrrole derivatives, see: I. Chataigner, C. Panel,
H. Gérard, S. R. Piettre, Chem. Commun. 2007, 3288–3290.
The sulfonamide N atom has higher sp3 hybridization, re-
sulting in higher aromatic character and in a smaller N–S rota-
tion barrier.
(330 µL, 2.00 mmol) and FmsCl (418 mg, 1.50 mmol) were intro-
duced. The ice bath was removed, and the flask was then immersed
into a 30 °C water bath. After stirring the colorless solution for
3 h, water (2.0 mL) was added. The aqueous layer was extracted
with CH2Cl2 (2ϫ2.0 mL). The combined organic layer was washed
with brine (2.0 mL) and dried with Na2SO4. Filtration followed by
evaporation under a reduced pressure gave a yellow oil (580 mg),
which was then subjected to silica gel column chromatography
(25 g, CH2Cl2) to give 2a (345 mg, 95% yield) as a white solid.
[6]
[7]
For details see the Supporting Information.
N-Fluorenylmethylation sometimes occurs in the removal of
Fmoc PG during peptide synthesis. See ref.[1]
Fms Removal: A 10-mL Young’s type Schlenk flask containing a
Teflon-coated magnetic stirring bar was charged with 1-(9H-
[8]
α-Amino carboxylic acid abbreviation follows the IUPAC rule.
The N-PG and ester PG are denoted as a prefix and a suffix,
respectively. α-Amino phosphonic acid is denoted by the ad-
dition of “P” at the end of the three-letter abbreviation, e.g.,
H-AlaP(OH)-OH for 1-aminoethylphosphonic acid.
a) E. Atherton, C. Bury, R. C. Sheppard, B. J. Williams, Tetra-
hedron Lett. 1979, 20, 3041–3042; b) J. Martinez, J. C. Tolle,
M. Bodanszky, J. Org. Chem. 1979, 44, 3596–3598; c) for Fmoc
removal using Pd/C, see: H. Sajiki, T. Maegawa, K. Hirota,
Jpn. Kokai Tokkyo Koho Jpn. Pat. 8887, 2007.
fluoren-9-yl)-N-phenethylmethanesulfonamide
(2a;
182 mg,
0.500 mmol), mesitylene (60.1 mg, 0.500 mmol, internal standard),
and DMF (2.50 mL). To this was added piperidine (247 µL,
2.50 mmol), and the clear solution was stirred at 25 °C for 1 min.
Because of difficulty in efficient separation of 1a from piperidine
and the piperidine adduct, the isolated yield of 1a was indirectly
determined to be 96% after benzoylation followed by silica gel col-
umn chromatography.
[9]
[10]
J. Brinckmann, H. Notbohm, P. K. Müller (Eds.), Collagen
Primer in Structure, Processing and Assembly Series: Topics in
Current Chemistry, Springer, New York, 2005.
Supporting Information (see footnote on the first page of this arti-
cle): Details of the preparation of FmsCl, procedures for protec-
tion/deprotection, stability examination, synthesis of a tripeptide,
and condensation between N-Fms-protected α-phosphonoalanine
monoester and secondary alkyl primary amines.
[11]
[12]
Y. Ishibashi, M. Kitamura, Chem. Commun. 2009, 6985–6987.
This value is highly consistent with that reported for related
compounds. See: R. Hirschmann, K. M. Yager, C. M. Taylor,
W. Moore, P. A. Sprengeler, J. Witherington, B. W. Phillips,
A. B. Smith, J. Am. Chem. Soc. 1995, 117, 6370–6371. Com-
pound 11 could not be isolated by silica gel column chromatog-
raphy of the crude mixture. This may be due to the moisture
instability of 11. See, O. V. Korenchenko, A. Y. Aksinenko,
V. B. Sokolov, I. V. Martynov, Heteroat. Chem. 1992, 3, 147–
150.
Acknowledgments
This work was aided by a Grant-in-Aid for Scientific Research
from the Ministry of Education, Science, Sports and Culture, Japan
(No. 25E07B212).
[13]
[14]
a) Nosyl: T. Fukuyama, C.-K. Jow, M. Cheung, Tetrahedron
Lett. 1995, 36, 6373–6374; b) dinitrobenzensulfonyl: T. Fukuy-
ama, M. Cheung, C.-K. Jow, Y. Hidai, T. Kan, Tetrahedron
Lett. 1997, 38, 5831–5834; c) SES: S. M. Weinreb, D. M.
Demko, T. A. Lessen, J. P. Demers, Tetrahedron Lett. 1986, 27,
2099–2102.
a) V. P. Kukhar, H. R. Hudson (Eds.), Aminophosphonic and
Aminophosphinic Acids, Wiley-VCH, Weinheim, Germany,
2000; b) P. Kafarski, B. Lejczak, Phosphorus Sulfur Silicon Re-
lat. Elem. 1991, 63, 193–215; c) see also: A. Peyman, E.
Uhlmann, K. Wagner, S. Augustin, G. Breipohl, D. W. Will, A.
Schäfer, H. Wallmeier, Angew. Chem. Int. Ed. Engl. 1996, 35,
2636–2638; d) A. Peyman, E. Uhlmann, G. Breipohl, H.
Wallmeier (Hoechst AG), EP 0739898A2, 1996; e) A. C.
van der Laan, R. Stromberg, J. H. van Boom, E. Kuyl-Yeheski-
ely, V. A. Efimov, O. G. Chakhmakhcheva, Tetrahedron Lett.
1996, 37, 7857–7860.
[1] a) L. A. Carpino, G. Y. Han, J. Am. Chem. Soc. 1970, 92, 5748–
5749; b) L. A. Carpino, G. Y. Han, J. Org. Chem. 1972, 37,
3404–3409; c) for a review, see: G. B. Fields, R. L. Noble, Int.
J. Peptide Protein Res. 1990, 35, 161–214; d) for an Fmoc com-
patible Nsc PG [2-(4-nitrophenylsulfonyl)ethoxycarbonyl], see:
A. Isidro-Llobet, M. Álvarez, F. Albericio, Chem. Rev. 2009,
109, 2455–2504.
[2] P. G. M. Wuts, T. W. Greene, Greene’s Protective Groups in Or-
ganic Synthesis, 4th ed., Wiley, New Jersey, 2006, pp. 711–713.
[3] a) A. Paquet, F. M. F. Chen, N. L. Benoiton, Can. J. Chem.
1984, 62, 1335–1338; b) L. A. Carpino, H. G. Chao, M. Beyer-
mann, M. Bienert, J. Org. Chem. 1991, 56, 2635–2642; c) D. S.
Perlow, J. M. Erb, N. P. Gould, R. D. Tung, R. M. Freidinger,
P. D. Williams, D. F. Veber, J. Org. Chem. 1992, 57, 4394–4400;
d) J. Coste, E. FréBrot, P. Jouin, J. Org. Chem. 1994, 59, 2437–
2446; e) K. Akaji, N. Kuriyama, Y. Kiso, J. Org. Chem. 1996,
61, 3350–3357.
[15]
Other carbamate-type PGs such as Nsc having a high inter-
changeablity with Fmoc could be extended to the correspond-
ing sulfonamide-based PGs in a similar way to the present
chemistry.
[4] a) R. Kluger, J. L. W. Chan, J. Am. Chem. Soc. 1976, 98, 4913–
4917; b) N. E. Jacobsen, P. A. Bartlett, J. Am. Chem. Soc. 1983,
105, 1613–1619; c) L. A. Reiter, B. P. Jones, J. Org. Chem. 1997,
62, 2808–2812; d) M. Nasopoulou, M. Matziari, V. Dive, A.
Yiotakis, J. Org. Chem. 2006, 71, 9525–9527.
Received: May 12, 2010
Published Online: June 23, 2010
4204
www.eurjoc.org
© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2010, 4201–4204