Regio- and Stereoselective Intermolecular Hydroalkoxylation of Alkynes
and the mixture stirred for 15 min. After stopping, the top
layer (hexane) was separated with a pipette and fresh n-
hexane (10 mL) was added and the mixture stirred again for
5 min. This process was repeated once again. In one run, the
remaining catalyst was dried under vacuum for 1 h and fresh
reactants and solvent (see above) were added to perform a
new reaction. In the other run, an aliquot was taken from
the combined hexane extracts and analysed by GC. Then,
volatiles were removed under vacuum and the resulting resi-
due was purified by a rapid column chromatography (50%
AcOEt/hexane) to give 2-methyl-2-phenyl-[1,3]dioxolan-4-
yl)-methanol 14; yield: 338 mg (87%, 3:1 mixture of dia-
120, 216; Angew. Chem. Int. Ed. 2008, 47, 209; f) V.
Belting, N. Krause, Org. Lett. 2006, 8, 4489.
[3] Non-metal-catalysed intermolecular hydroalkoxylations
had also been reported, see: J. E. Murtagh, S. H.
McCooey, S. J. Connon, Chem. Commun. 2005, 227.
[4] T. Murata, Y. Mizobe, H. Gao, Y. Ishii, T. Wakabaya-
shi, F. Nakano, T. Tanase, S. Yano, M. Hidai, I. Echi-
zen, H. Nanikawa, S. Motomura, J. Am. Chem. Soc.
1994, 116, 3398.
[5] A. Avshu, R. D. OꢅSullivan, A. W. Parkins, N. W.
Alcock, R. M. Countryman, J. Chem. Soc. Dalton
Trans. 1983, 1619.
ACHTUNGTRENNUNGstereoisomers, only major diastereoisomer shown). Rf (neat
[6] Y. Kataoka, O. Matsumoto, K. Tani, Organometallics
AcOEt): 0.47. GC/MS: m/z (M+· 194)=179 (100%), 163
(10%), 105 (79%), 77 (29%), 43 (31%); IR: n=3421 (b),
2988, 2934, 2888, 1446, 1374, 1246, 1201, 1135, 1046, 1026,
1996, 15, 5246.
[7] J. Barluenga, F. Aznar, M. Bayod, Synthesis 1988, 144.
[8] C. Gemel, G. Trimmel, C. Slugovc, S. Kremel, K. Mer-
eiter, R. Schmid, K. Kirchner, Organometallics 1996,
15, 3998.
[9] S. H. Bertz, G. Dabbagh, P. Cotte, J. Org. Chem. 1982,
47, 2216.
1
940, 880, 762, 703 cmÀ1); H NMR: d=7.40 (2H, mult), 7.24
(3H, mult), 3.99 (1H, mult), 3.77 (1H, dd, J=8.1 Hz,
5.4 Hz), 3.69 (2H, tt, J=8.4 Hz, 7.1 Hz), 3.55 (1H, dd, J=
11.6 Hz, 5.3 Hz), 2.30 (1H, s), 1.60 (3H, s); 13C NMR: d=
142.9 (C), 128.2 (CH, ꢃ2), 125.2 (CH, ꢃ2), 124.7 (CH),
109.6 (C), 76.0 (CH), 65.7 (CH2), 63.3 (CH2), 28.0 (CH3);
anal. calcd. for C11H14O3: C 68.02, H 7.27; found: C 66.88, H
7.67; HRMS (ESI): m/z 195.1014 [(M+H)+, calcd. for
C11H15O3: 195.1021], 193.0879 [(MÀH)+, calcd. for
C11H13O3: 193.0865], 179.0668 [(MÀHÀCH3)+, major peak,
calcd. for C10H11O3: 179.0708].
[10] Y. Kataoka, O. Matsumoto, K. Tani, Chem. Lett. 1996,
727.
[11] K. Breuer, J. H. Teles, D. Demuth, H. Hibst, A. Schꢆ-
fer, S. Brode, H. Domgçrgen, Angew. Chem. 1999, 111,
1497; Angew. Chem. Int. Ed. 1999, 38, 1401.
[12] a) J. H. Teles, S. Brode, M. Chabanas, Angew. Chem.
1998, 110, 1475; Angew. Chem. Int. Ed. 1998, 37, 1415;
b) Y. Fukuda, K. Utimoto, J. Org. Chem. 1991, 56,
3729.
Supporting Information
The syntheses of gold catalysts 1b and 1c, reaction proce-
dures, compound characterisation, NMR spectra and addi-
tional Tables and Figure for this article are available as Sup-
porting Information.
[13] The metal species is generally not recovered at the end
of the reaction, one single exception being the Telesꢅ
work (ref.[11]), where a zinc silicate is employed as het-
erogeneous catalyst in flow. In addition, high reaction
temperatures are needed in most of the cases reported.
[14] D. Masui, Y. Ishii, M. Hidai, Chem. Lett. 1998, 717.
[15] A. G. Davies, R. J. Puddephatt, J. Chem. Soc. C 1968,
1479.
Acknowledgements
[16] Y. Kataoka, Y. Tsuji, O. Matsumoto, M. Ohashi, T. Ya-
magata, K. Tani, J. Chem. Soc. Chem. Commun. 1995,
2099.
Financial support by MAT2006 and PROMETEO from
Generalitat Valenciana are acknowledged. A. L-P. thanks
MICINN for financial support on JAE-Doctor program. V.
R. thanks Consejo Superior de Investigaciones Cientꢀficas
(CSIC) for an I3-P fellowship.
[17] M. Konkol, H. Schmidt, D. Steinborn, J. Mol. Catal. A
2007, 261, 301.
[18] J. W. Goodyear, C. W. Hemingway, R. W. Harrington,
M. R. Wiseman, B. J. Brisdon, J. Organomet. Chem.
2002, 664, 176.
References
[19] E. Hevia, J. Pꢀrez, L. Riera, V. Riera, Organometallics
2002, 21, 1750.
[1] a) For an exhaustive review see F. Alonso, I. P. Belet-
skaya, M. Yus, Chem. Rev. 2004, 104, 3079; b) Kirk-
Othmer Encyclopedia of Chem. Tech., (Eds:. J. I.
Kroschwitz, M. Howe-Grant), John Wiley & Sons, 4th
edn., 1991, Vol. 1, p 221.
[2] a) S. Seo, X. Yu, T. J. Marks, J. Am. Chem. Soc. 2009,
131, 263; b) A. Diꢀguez-Vꢄzquez, C. C. Tzschucke, J.
Crecente-Campo, S. McGrath, S. V. Ley, Eur. J. Org.
Chem. 2009, 1698; c) B. A. Messerle, K. Q. Vuong, Or-
ganometallics 2007, 26, 3031; d) B. Liu, J. K. De
Brabander, Org. Lett. 2006, 8, 4907. In the last years,
intramolecular hydroalkoxylations have been incorpo-
rated into elaborated tandem processes as one of the
main steps, that is, see e) A. Diꢀguez-Vꢄzquez, C. C.
Tzschucke, W. Y. Lam, S. V. Ley, Angew. Chem. 2008,
[20] a) For a seminal work on this reaction see E. Winter-
feldt, H. Preuss, Angew. Chem. 1965, 77, 679; b) F.
Nasiri, B. Atashkar, Monatsh. Chem. 2008, 139, 1223.
[21] The well-reported alkynophilic nature of the gold
centre (see, i.e.: a) D. J. Gorin, F. D. Toste, Nature 2007,
446, 395; b) A. S. K. Hashmi, G. J. Hutchings, Angew.
Chem. 2006, 118, 8064; Angew. Chem. Int. Ed. 2006, 45,
7896) together with its strong Lewis acidity makes
these complexes suitable candidates for catalysts in ad-
ꢀ
ditions to C C triple bonds. In fact, we have recently
reported that the hydration of alkynes can be carried
out at room temperature by using these gold complexes
as catalysts, see c) A. Leyva, A. Corma, J. Org. Chem.
2009, 74, 2067.
Adv. Synth. Catal. 2010, 352, 1701 – 1710
ꢂ 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1709