6544
I. Paterson et al. / Tetrahedron 66 (2010) 6534–6545
J¼10.8, 8.1 Hz, H10), 5.43 (1H, t, J¼10.8 Hz, H23), 5.15 (1H, br d,
J¼16.6 Hz, H26a), 5.05 (1H, br d, J¼10.8 Hz, H26b), 4.71–4.78 (1H, m,
H9), 3.87–3.91 (1H, m, H19), 3.55 (1H, dt, J¼9.3, 5.8 Hz, H7), 3.52 (1H,
dd, J¼6.2, 3.5 Hz, H21), 3.42 (1H, dd, J¼5.0, 3.1 Hz, H13), 2.80–2.92
(2H, m, H12þH22), 1.97–2.05 (1H, m, H6), 1.78–1.86 (3H, m,
H14þH18aþH20), 1.75 (1H, ddd, J¼13.2, 9.5, 5.8 Hz, H8a), 1.60–1.69
(2H, m, H15aþH18b),1.45–1.58 (3H, m, H8bþH16þH17a),1.39 (3H, s,
CCH3), 1.31 (3H, s, CCH3), 1.12–1.18 (2H, m, H15bþH17b), 1.10 (3H, d,
J¼7.0 Hz, Me20), 1.08 (3H, d, J¼7.0 Hz, Me12), 1.04 (9H, s, SiC(CH3)3),
1.01 (9H, s, SiC(CH3)3), 1.005 (3H, d, J¼6.5 Hz, Me14), 0.99 (3H, d,
J¼6.5 Hz, Me16), 0.98 (3H, d, J¼7.0 Hz, Me22), 0.83 (3H, d, J¼7.0 Hz,
chromatography (20% hexane/toluene) afforded macrolactone 32
(25.9 mg, 88%) as a colourless oil: Rf 0.59 (10% EtOAc/light petro-
20
leum); [
a
]
D
þ2.6 (c 0.53, CHCl3); IR (liquid film)/cmꢀ1 2957, 2930,
2856, 1716, 1645, 1581, 1516, 1461; 1H NMR (500 MHz, C6D6)
d 7.65
(1H, dd, J¼14.9, 11.3 Hz, H4), 6.72 (1H, dt, J¼17.0, 10.6 Hz, H25), 6.25
(1H, t, J¼11.3 Hz, H3), 6.02 (1H, t, J¼11.3 Hz, H24), 5.76 (1H, t,
J¼11.3 Hz, H11), 5.68 (1H, dd, J¼15.6, 6.4 Hz, H5), 5.63 (1H, d,
J¼11.3 Hz, H2), 5.58 (1H, t, J¼9.9 Hz, H10), 5.51 (1H, d, J¼8.5 Hz,
H21), 5.44 (1H, t, J¼11.3 Hz, H23), 5.13 (1H, d, J¼16.3 Hz, H26a), 5.06
(1H, d, J¼10.6 Hz, H26b), 4.73 (1H, ddd, J¼14.9, 9.6, 6.0 Hz, H9),
3.89–3.94 (1H, m, H7), 3.44–3.50 (1H, m, H19), 3.38–3.41 (1H, m,
H13), 2.99–3.08 (1H, m, H22), 2.86–2.94 (1H, m, H12), 2.52–2.59
(1H, m, H6), 1.95–2.02 (1H, m, H20), 1.83–1.92 (1H, m, H18a), 1.69–
1.83 (3H, m, H8aþH14þH17a), 1.37–1.54 (2H, m, H8bþH16), 1.45
(3H, s, CCH3), 1.40 (3H, s, CCH3), 1.18–1.36 (2H, m, H15aþH18b), 1.25
(3H, d, J¼6.9 Hz, Me6), 1.14 (3H, d, J¼7.1 Hz, Me12), 1.10 (3H, d,
J¼7.1 Hz, Me20), 1.05 (9H, s, SiC(CH3)3), 1.03 (9H, s, SiC(CH3)3), 0.98
(6H, d, J¼6.5 Hz, Me14þMe22), 0.96 (3H, d, J¼6.7 Hz, Me16), 0.80–
0.89 (2H, m, H15bþH17b), 0.14 (3H, s, SiCH3), 0.12 (3H, s, SiCH3),
0.11 (3H, s, SiCH3), 0.10 (3H, s, SiCH3); 13C NMR (125 MHz, C6D6)
Me6), 0.15 (6H, s, Si(CH3)2), 0.13 (3H, s, SiCH3), 0.12 (3H, s, SiCH3); 13
C
NMR (125 MHz, CDCl3) d 148.2, 136.9, 135.3, 132.3, 130.0, 128.5, 117.8,
100.5, 79.4, 77.5, 76.5, 75.2, 69.2, 63.4, 45.0, 42.1, 37.8, 36.8, 36.4, 36.1,
34.4, 32.0, 31.5, 30.4, 26.2, 26.0, 25.0, 24.4, 20.4, 19.1, 18.4, 18.1, 17.7,
15.3, 15.1, 7.0, ꢀ3.4, ꢀ3.66, ꢀ3.73, ꢀ4.4; HRMS (þESI) calcd for
C44H83NaIO5Si2 [MþNa]þ: 897.4716, found: 897.4714.
5.1.24. Acid 31. To a solution of iodide 30 (42.2 mg, 48.2
1.0 equiv) and stannane 644 (50.0 mg, 96.2
mol, 2.0 equiv) in
freeze-thaw deoxygenated NMP (1800
L) at rt was added CuTC21
(46.0 mg, 241 mol, 5.0 equiv). After stirring for 14 h, satd aq
mmol,
m
m
d 165.6, 144.2, 144.0, 137.0, 134.8, 133.9, 132.6, 130.2, 130.0, 117.7,
m
115.6, 100.5 79.4, 75.8, 74.5, 67.9, 64.0, 41.3, 41.2, 40.5, 36.6, 36.1,
34.8, 33.8, 33.0, 31.4, 30.9, 26.3, 26.2, 25.4, 24.6, 20.4, 19.5, 18.7, 18.3,
17.9, 16.6, 11.8, 11.1, ꢀ3.5, ꢀ3.6, ꢀ3.8, ꢀ3.9; HRMS (þESI) calcd for
C47H85O6Si2 [MþH]þ: 801.5879, found: 801.5868.
NH4Cl (2 mL) was added and the phases separated. The aqueous
phase was extracted with CH2Cl2 (3ꢂ2 mL) and the combined or-
ganic extracts dried (MgSO4) and concentrated in vacuo
(0.1 mmHg/0 ꢁC to remove NMP). The crude silyl ester intermediate
was re-dissolved in THF/MeOH (3:1, 2 mL) and to this solution at rt
5.1.26. (ꢀ)-Dictyostatin (1). To a solution of macrolactone 32
was added KF (28.0 mg, 482
mmol,10 equiv). After 3 h, satd aq NH4Cl
(81.4 mg, 102
HF$pyr (400
four days, four aliquots of HF$pyr (300
m
mol, 1.0 equiv) in THF (11 mL) at 0 ꢁC was added
L) dropwise over 20 min. Over the course of the next
(2 mL) was added and the phases separated. The aqueous phase was
extracted with CH2Cl2 (3ꢂ2 mL) and the combined organic extracts
dried (MgSO4) and concentrated in vacuo. Flash chromatography
(5% EtOAc/light petroleum/20% EtOAc/light petroleum) afforded
acid 31 (40.6 mg, 99%) as a colourless oil contaminated with traces of
m
mL) were added at rt to this
stirred reaction mixture. The reaction mixture was then quenched
by its careful addition to satd aq NaHCO3 (50 mL) at 0 ꢁC, warmed to
rt and stirred for a further 30 min. The phases were separated, the
aqueous phase was extracted with EtOAc (3ꢂ50 mL) and the com-
bined organic extracts dried (Na2SO4) and concentrated in vacuo.
Flash chromatography (30% hexane/EtOAc) afforded (ꢀ)-dictyosta-
tin residues,45 which was used without further purification: Rf 0.22
20
(30% EtOAc/light petroleum); [
a
]
D
ꢀ23.2 (c 1.61, CHCl3); IR (liquid
film)/cmꢀ1 2957, 2928, 2856, 1692, 1637, 1601, 1515, 1462; 1H NMR
(500 MHz, C6D6)
7.69 (1H, br t, J¼13.0 Hz, H4), 6.71 (1H, dt, J¼17.4,
d
tin (1) (38.0 mg, 70%) as an amorphous white solid: Rf 0.47 (EtOAc);
20
10.6 Hz, H25), 6.31 (1H, br t, J¼10.8 Hz, H3), 6.10 (1H, t, J¼10.1 Hz,
H24), 6.03 (1H, dd, J¼16.2, 8.1 Hz, H5), 5.69 (1H, t, J¼10.8 Hz, H11),
5.46–5.62 (2H, m, H2þH10), 5.46 (1H, t, J¼10.1 Hz, H23), 5.15 (1H, d,
J¼17.5 Hz, H26a), 5.05 (1H, d, J¼10.8 Hz, H26b), 4.76–4.82 (1H, m,
H9), 3.85–3.91 (1H, m, H19), 3.71 (1H, ddd, J¼11.1, 10.1, 5.7 Hz, H7),
3.58–3.62 (1H, m, H21), 3.44 (1H, br t, J¼3.7 Hz, H13), 2.81–2.92
(2H, m, H12þH22), 2.21–2.28 (1H, m, H6), 1.79–1.89 (4H, m,
H8aþH14þH18aþH20), 1.46–1.70 (4H, m, H8bþH16þH17aþH18b),
1.46 (3H, s, CCH3), 1.22–1.39 (2H, m, H15aþH17b),1.37 (3H, s, CCH3),
1.10–1.15 (1H, m, H15b), 1.10 (3H, d, J¼6.0 Hz, Me12), 1.08 (3H, d,
J¼6.9 Hz, Me20),1.04 (9H, s, SiC(CH3)3), 1.03 (9H, s, SiC(CH3)3), 1.00–
1.02 (3H, m, Me6), 0.99 (6H, d, J¼6.5 Hz, Me14þMe16), 0.97 (3H, d,
J¼7.3 Hz, Me22), 0.17 (3H, s, SiCH3), 0.15 (3H, s, SiCH3), 0.14 (3H, s,
[a
]
ꢀ32.7 (c 0.22, MeOH);47 IR (liquid film)/cmꢀ1 2955, 2930,
D
2858, 1716, 1462, 1257; 1H NMR (700 MHz, CD3OD)
d 7.21 (1H, dd,
J¼15.5, 11.4 Hz, H4), 6.70 (1H, dt, J¼15.2, 10.4 Hz, H25), 6.65 (1H, t,
J¼11.4 Hz, H3), 6.18 (1H, dd, J¼15.5, 6.7 Hz, H5), 6.06 (1H, t,
J¼11.1 Hz, H24), 5.55 (1H, d, J¼11.4 Hz, H2), 5.55 (1H, t, J¼10.0 Hz,
H11), 5.41 (1H, dd, J¼10.8, 8.9 Hz, H10), 5.33 (1H, dd, J¼11.1, 10.6 Hz,
H23), 5.24 (1H, dd, J¼15.2,1.7 Hz, H26a), 5.14 (1H, dd, J¼10.4,1.7 Hz,
H26b), 5.13 (1H, dd, J¼6.9, 5.1 Hz, H21), 4.65 (1H, dddd, J¼10.1, 9.5,
2.9, 0.8 Hz, H9), 4.05 (1H, ddd, J¼10.6, 4.0, 2.7 Hz, H7), 3.34 (1H, m,
H19), 3.16 (1H, ddq, J¼10.6, 6.9, 6.8 Hz, H22), 3.10 (1H, dd, J¼8.1,
2.9 Hz, H13), 2.76 (1H, m, H12), 2.60 (1H, m, H6), 1.88 (1H, m, H20),
1.83 (1H, m, H18a),1.59 (1H, m, H14),1.57 (1H, m, H17a),1.53 (1H, m,
H16), 1.49 (1H, ddd, J¼14.0, 10.6, 2.9 Hz, H8a), 1.42 (1H, ddd, J¼14.0,
10.1, 2.7 Hz, H8b), 1.24 (1H, ddd, J¼13.8, 10.3, 3.8 Hz, H15a),1.15 (3H,
d, J¼6.9 Hz, Me27), 1.13 (3H, d, J¼7.0 Hz, Me28), 1.10 (1H, m, H18b),
1.07 (3H, d, J¼6.9 Hz, Me31), 1.01 (3H, d, J¼6.8 Hz, Me32), 0.95 (3H,
d, J¼6.5 Hz, Me29), 0.93 (3H, d, J¼6.6 Hz, Me30), 0.89 (1H, m, H15b),
SiCH3), 0.12 (3H, s, SiCH3); 13C NMR (125 MHz, C6D6)
d 170.9, 147.7,
147.4, 135.7, 135.0, 132.6, 130.7, 130.1, 117.9, 115.9, 114.1, 100.5, 79.8,
76.1, 75.5, 69.9, 64.0, 42.3, 42.1, 29.5, 37.3, 37.0, 36.6, 34.7, 32.3, 31.9,
30.8, 26.4, 25.9, 25.3, 24.6, 20.7, 19.3, 18.7, 18.4, 17.9, 16.1, 15.7, 8.7,
ꢀ3.1, ꢀ3.4, ꢀ3.6, ꢀ4.3; HRMS (þESI) calcd for C47H90NO7Si2
[MþNH4]þ: 836.6250, found: 836.6255.
0.69 (1H, m, H17b); 13C NMR (125 MHz, CD3OD)
d 168.0,146.3,144.8,
134.9, 134.5, 133.4, 131.3, 131.1, 128.5, 118.5, 118.0, 80.3, 78.6, 73.7,
70.3, 65.4, 44.0, 42.2, 40.8, 40.5, 35.8, 35.7, 35.3, 32.7, 32.5, 31.2, 21.8,
19.3, 18.0, 15.9, 13.6, 10.3; HRMS (þESI) calcd for C32H52NaO6
[MþNa]þ: 555.3662, found: 555.3663. This spectroscopic data was
identical to that recorded for an authentic sample of dictyostatin.
5.1.25. Macrolactone 32. To
a solution of acid 31 (30.1 mg,
36.8 mol, 1.0 equiv) in PhMe (2.5 mL) at rt was added Et3N
m
(13.8
(10.3
m
m
L, 99.3
L, 66.2
m
m
mol, 2.7 equiv) then 2,4,6-trichlorobenzoylchloride
mol, 1.8 equiv). After stirring for 2 h, the reaction
mixture was diluted with PhMe (50 mL) and DMAP (2.2 mg,
18.3 mol, 0.5 equiv) was added. After 18 h, satd aq NaHCO3
Acknowledgements
m
(50 mL) was added and the phases separated. The aqueous phase
was extracted with CH2Cl2 (3ꢂ40 mL) and the combined organic
extracts dried (MgSO4) and concentrated in vacuo. Flash
Financial support was provided by the EPSRC, the NSERC of
Canada (R.B.), the Gobernio de Canarias, the Cambridge European
Trust (O.D.), the EC (Network HPRN-CT-2000-18 and Marie Curie