V. Parekh et al. / Tetrahedron: Asymmetry 21 (2010) 1549–1556
1555
0.5 ml/min, 254 nm, 20.0 °C): tR = 17.8 min (major), tS = 19.5 (min-
116.5, 113.6, 112.7, 112.1, 109.1, 101.0, 50.3, 36.4, 31.6, 27.2,
25.6. HRMS Found (EI): [M++H] 360.0596, C18H19BrNO2 requires
360.0594 (-0.7 ppm error). Reduction of 25 using catalyst 12;
81% ee and 30% conversion: Enantiomeric excess by HPLC analysis
and conversion by NMR analysis (Chiralcel OD-H, hexane/isopro-
panol = 80:20, flow rate 0.6 ml/min, 254 nm, 19.0 °C): tS = 21.1 min
(major), tR = 29.1 (minor). The absolute configuration has not been
determined, but can be compared with the reduction product of
substrate 24.
or); ½a 2D5
ꢂ
¼ þ45:5 (c 0.5, CHCl3) 50% ee (R) (lit.31
½
a 2D5
ꢂ
¼ ꢁ73:1 (c
0.55, CHCl3) 92% ee (S); 1H NMR (300 MHz, CDCl3) d 7.30–7.16
(m, 5H), 6.97–6.92 (m, 2H), 6.59 (td, J = 7.4, 1.1 Hz, 1H), 6.42 (dd,
J = 8.6, 1.3 Hz, 1H), 3.80 (br s, 1H), 3.31–3.22 (m, 1H), 2.85–2.66
(m, 4H), 2.01–1.92 (m, 1H), 1.84–1.77 (m, 2H), 1.71–1.59 (m,
1H); 13C NMR (300 MHz, CDCl3) d 143.9, 141.3, 128.7, 127.9,
127.8, 126.1, 125.4, 120.7, 116.4, 113.5, 50.5, 37.7, 31.6, 27.4,
25.6. Reduction of 24 using catalyst 12; 93% ee and 57% conver-
sion: Enantiomeric excess by HPLC analysis and conversion by
NMR analysis (Chiralcel OD-H, hexane/isopropanol = 90:10, flow
rate 0.5 ml/min, 254 nm, 15.0 °C): tR = 19.7 min (major), tS = 21.7
(minor).
*
Acknowledgements
We thank the EPSRC and Dr. Reddy’s Laboratories (Cambridge)
for financial support of V.P. (via the Collaborative Training Account
grant held at Warwick University). Dr. Martin Fox (Dr. Reddy’s) is
acknowledged for the original observation of the presence of a par-
tially reduced quinoline as a by-product in an attempted ketone
reduction using 9. Dr. B. Stein and colleagues of the EPSRC National
Mass Spectroscopic service (Swansea) are thanked for HRMS anal-
ysis of certain compounds. We acknowledge the use of the EPSRC
Chemical Database Service.33 The sample of catalyst 1 used in this
project was prepared by Dr. Silvia Gosiewska and the sample of
catalyst 6 was prepared by Dr. José E. D. Martins.
4.11.7. 2-tert-Butyl-1,2,3,4-tetrahydroquinoline
Reduction of 20 using catalyst 9; 0% ee and 57% conversion:
enantiomeric excess by HPLC analysis and conversion by NMR
analysis (Chiralcel OD-H, hexane/isopropanol = 90:10, flow rate
0.5 ml/min, 254 nm, 15.0 °C): tR = 20.5 min, tS = 27.5; 1H NMR
(300 MHz, CDCl3) d 6.98–6.94 (m, 2H), 6.52 (td, J = 7.4, 1.1 Hz,
1H), 6.45 (d, J = 7.7 Hz, 1H), 3.78 (br s, 1H), 3.00–2.96 (m, 1H),
2.83–2.70 (m, 2H), 2.00–1.95 (m, 1H), 1.60–1.55 (m, 1H), 0.98 (s,
9H); 13C NMR (300 MHz, CDCl3) d 144.8, 128.4, 126.1, 120.9,
116.1, 113.4, 60.3, 32.8, 26.8, 25.4, 22.5. Reduction of 20 using cat-
alyst 12; 0% ee and 16% conversion; HPLC (Chiralcel OD-H, hexane/
isopropanol = 90:10, flow rate 0.2 ml/min, 254 nm, 14.0 °C):
tR = 20.6 min, tS = 27.9.
References
1. (a) Blaser, H.-U.; Spindler, F. In Chapter 6.2 of Comprehensive Asymmetric
Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin,
Heidelberg, 2004; (b)Catalytic Asymmetric Synthesis; Ojima, I., Ed., 2nd ed.;
Wiley-VCH, 2000; (c) Capprio, V.; Williams, J. M. J. Catalysis in Asymmetric
Synthesis; John Wiley and Sons: Chichester, 2008. Chapter 3.
2. Wills, M. In Modern Reduction Methods; Andersson, P. G., Munslow, I. J., Eds.;
Wiley-VCH: Weinheim, 2008; pp 271–296. Chapter 11.
3. (a) Wang, W.-B.; Lu, S.-M.; Yang, P.-Y.; Han, X. W.; Zhou, Y.-G. J. Am. Chem. Soc.
2003, 125, 10536–10537; (b) Lu, S.-M.; Han, X.-W.; Zhou, Y.-G. J. Organomet.
Chem. 2007, 692, 3065–3069.
4.11.8. (R)-2-(3,5-Dimethoxyphenethyl)-1,2,3,4-tetrahydro-
quinoline
Reduction of 26 using catalyst 9; 67% ee and 93% conversion:
Enantiomeric excess by HPLC analysis and conversion by NMR
analysis (Chiralcel OD-H, hexane:isopropanol = 80:20, flow rate
0.6 ml/min, 254 nm, 18.0 °C): tR = 28.1 min (major), tS = 36.8 (min-
4. Lam, K. H.; Xu, L.; Feng, L.; Fan, Q.-H.; Lam, F. L.; Lo, W.-H.; Chan, A. S. C. Adv.
Synth. Catal. 2005, 347, 1755–1758.
24
*
or);
½
a D
ꢂ
¼ þ39:5 (c 0.5, CHCl3) 67% ee (R);
m
max/cmꢁ1 (thin film)
5. Qiu, L.; Kwong, F. Y.; Wu, J.; Lam, W. H.; Chan, S.; Yu, W.-Y.; Li, Y.-M.; Guo, R.;
Zhou, Z.; Chan, A. S. C. J. Am. Chem. Soc. 2006, 128, 5955–5965.
6. Yamagata, T.; Tadaoka, H.; Nagata, M.; Hirao, T.; Kataoka, Y.; Ratovelomanana-
Videl, V.; Genet, J. P.; Mashima, K. Organometallics 2006, 25, 2505–2513.
7. Tang, W.-J.; Zhu, S.-F.; Xu, L.-J.; Zhou, Q.-L.; Fan, Q.-H.; Zhou, H.-F.; Lam, K.;
Chan, A. S. C. Chem. Commun. 2007, 613–615.
8. Jahjah, M.; Alame, M.; Pellet-Rostaing, S.; Lemaire, M. Tetrahedron: Asymmetry
2007, 18, 2305–2312.
9. Deport, C.; Buchotte, M.; Abecassis, K.; Tadaoka, H.; Ayad, T.; Ohshima, T.;
Genet, J.-P.; Mashima, K. Synlett 2007, 2743–2747.
10. Chan, S. H.; Lam, K. H.; Li, Y.-M.; Xu, L.; Tang, W.; Lam, F. L.; Lo, W. H.; Yu, W. Y.;
Fan, Q.; Chan, A. S. C. Tetrahedron: Asymmetry 2007, 18, 2625–2631.
11. Xu, L.; Lam, K. H.; Ji, J.; Wu, J.; Fan, Q.-H.; Lo, W.-H. Chem. Commun. 2005, 1390–
1392.
12. Wang, Z.-J.; Deng, G.-J.; Li, Y.; He, Y.-M.; Tang, W.-J.; Fan, Q.-H. Org. Lett. 2007, 9,
1243–1246.
13. Lu, S.-M.; Wang, Y.-Q.; Han, X.-W.; Zhou, Y.-G. Angew. Chem., Int. Ed. 2006, 45,
2260–2263.
14. Reetz, M. T.; Li, X. Chem. Commun. 2006, 2159–2160.
3675, 3396, 2935, 2838, 1594, 1460, 1428, 1351, 1309, 1276,
1254, 1203, 1148, 1114, 1056, 924, 830, 746, 718, 696, 667; 1H
NMR (300 MHz, CDCl3) d 6.98–6.90 (m, 2H), 6.60 (td, J = 7.4,
1.1 Hz, 1H), 6.45 (dd, J = 8.2, 1.4 Hz, 1H), 6.38–6.35 (m, 2H), 6.32–
6.28 (m, 1H), 3.77 (s, 6H), 3.34–3.25 (m, 1H), 2.81–2.72 (m, 2H),
2.69–2.63 (m, 2H), 2.2–1.94 (m, 1H), 1.85–1.75 (m, 2H), 1.72–
1.60 (m, 1H). 13C NMR (300 MHz, CDCl3) d 160.9, 144.3, 129.3,
126.8, 121.3, 117.0, 114.2, 106.5, 97.9, 55.3, 51.1, 38.0, 32.5, 28.0,
26.2. HRMS Found (EI): [M++H] 298.1798, C19H24NO2 requires
298.1802 (1.3 ppm error). Reduction of 26 using catalyst 12; 94%
ee and 58% conversion: Enantiomeric excess by HPLC analysis
and conversion by NMR analysis (Chiralcel OD-H, hexane:isopro-
panol = 80:20, flow rate 0.6 ml/min, 254 nm, 19.0 °C): tR = 27.4 min
*
(major), tS = 35.9 (minor). The absolute configuration has not been
determined, but can be compared with the reduction product of
substrate 27.
15. (a) Lu, S.-M.; Han, X.-W.; Zhou, Y.-G. Adv. Synth. Catal. 2004, 346, 909–912; (b)
Wang, D.-S.; Zhou, J.; Wang, D.-W.; Guo, Y.-L.; Zhou, Y.-G. Tetrahedron Lett.
2010, 51, 525–528.
16. Zhou, H.; Li, Z.; Wang, Z.; Wang, T.; Xu, L.; He, Y.; Fan, Q.-H.; Pan, J.; Gu, L.;
Chan, A. S. C. Angew. Chem., Int. Ed. 2008, 47, 8464–8467.
17. Li, Z.-W.; Wang, T.-L.; He, Y.-M.; Wang, Z.-J.; Fan, Q.-H.; Pan, J.; Xu, L.-J. Org. Lett.
2008, 10, 5265–5268.
18. Wang, C.; Li, C. Q.; Wu, X. F.; Pettman, A.; Xiao, J. L. Angew. Chem., Int. Ed. 2009,
48, 6524–6528.
19. Fujita, K.-I.; Kitatsuji, C.; Furukawa, S.; Yamaguchi, R. Tetrahedron Lett. 2004, 45,
3215–3217.
20. Reuping, M.; Theissmann, T.; AntonChick, A. P. Synlett 2006, 1071–1074.
21. Wang, D.-W.; Zeng, W.; Zhou, Y.-G. Tetrahedron: Asymmetry 2007, 18, 1103–
1107.
22. (a) Noyori, R. Adv. Synth. Catal. 2003, 345, 15–32; (b) Noyori, R.; Sandoval, C. A.;
Muniz, K.; Ohkuma, T. Philos. Trans. R. Soc. London, Ser. A 2005, 363, 901–912;
(c) Hedberg, C. In Modern Reduction Methods; Andersson, P. G., Munslow, I. J.,
Eds.; Wiley-VCH, 2008. Chapter 5; (d) Noyori, R.; Kitamura, M.; Ohkuma, T.
Proc. Nat. Acad. Sci. 2004, 101, 5356–5362; (e) Noyori, R.; Ohkuma, T. Angew.
Chem., Int. Ed. 2006, 40, 40–73; (f) Hashiguchi, S.; Fujii, A.; Takehara, J.; Ikariya,
T.; Noyori, R. J. Am. Chem. Soc. 1995, 117, 7562–7563; (g) Fujii, A.; Hashiguchi,
4.11.9. (R)-2-(2-(6-Bromobenzo[d][1,3]dioxol-5-yl)ethyl)-
1,2,3,4-tetrahydroquinoline
Reduction of 25 using catalyst 9; 47% ee and 86% conversion:
Enantiomeric excess by HPLC analysis and conversion by NMR
analysis (Chiralcel OD-H, hexane/isopropanol = 80:20, flow rate
0.6 ml/min, 254 nm, 19.0 °C): tS = 21.2 min (major), tR = 29.2 (min-
25
*
or);
½
a D
ꢂ
¼ þ25:6 (c 0.5, CHCl3) 47% ee (R);
m
max/cmꢁ1 (thin film)
3664, 3410, 2912, 1606, 1585, 1500, 1473, 1434, 1408, 1353,
1309, 1275, 1227, 1111, 1066, 1035, 964, 931, 858, 832, 746,
718, 657; 1H NMR (300 MHz, CDCl3) d 7.02–6.92 (m, 3H), 6.70 (s,
1H), 6.59 (td, J = 7.4, 1.2 Hz, 1H), 6.45 (dd, J = 8.3, 1.3 Hz, 1H),
5.90 (s, 2H), 3.84 (br s, 1H), 3.38–3.30 (m, 1H), 2.88–2.72 (m,
4H), 2.10–2.00 (m, 1H), 1.88–1.72 (m, 2H), 1.60 (s, 1H); 13C NMR
(300 MHz, CDCl3) d 146.8, 143.9, 133.5, 128.6, 126.1, 120.7,