Angewandte
Chemie
medical Applications, Elsevier, Amsterdam, 1993; e) J. T. Welch,
hydroxylamine anion should realize the highly enantioselec-
tive reaction (Figure 4b). The possibility of the aromatic p–p
interactions between 2a and 3 might be ruled out because the
nonaromatic substrate 2p was also converted into product 1p
with high enantiomeric excess.
S. Eswarakrishman, Fluorine in Bioorganic Chemistry, Wiley,
New York, 1991; f) R. Filler, Y. Kobayashi, Biomedicinal Aspects
of Fluorine Chemistry, Elsevier Biomedical Press and Kodansya
Ltd, Amsterdam, 1982; g) V. M. Muzalevskiy, A. V. Shastin, E. S.
Balenkova, G. Haufe, V. G. Nenajdenko, Synthesis 2009, 3905 –
We next focused on the asymmetric hydroxylamine/enone
cascade reaction of multiply substituted substrate 2r. Under
the optimized reaction conditions using catalyst 3a, the
corresponding trifluoromethyl-substituted 2-isoxazoline 1r
with an R configuration was obtained in 99% yield with
75% ee. Upon addition of catalyst 3c instead of 3a to the
reaction, the enantioselectivity of the 2-isoxazoline was
improved by as much as 13% ee to provide 1r in 99% yield
with 88% ee. As expected, (S)-1r with 81% ee was obtained
in excellent yield from the asymmetric hydroxylamine/enone
cascade reaction by using the pseudoenantiomer catalyst 3d.
The 2-isoxazoline 1r could be a key intermediate for the
synthesis of chiral type B compounds (Scheme 4).[3g–j]
[2] For example: a) M. L. Quan, C. D. Ellis, A. Y. Liauw, R. S.
Alexander, R. M. Knabb, G. Lam, M. R. Wright, P. C. Wong,
c) P. Bravo, L. Bruchꢁ, M. Crucianelli, A. Farina, S. V. Meille, A.
Merli, P. Seresini, J. Chem. Res. Synop. 1996, 348 – 349.
[3] For example: a) T. Mita, Y. Kudo, T. Mizukoshi, H. Hotta, K.
Maeda, S. Takii, WO2004018410, 2004; b) Y. Ozoe, M. Asahi, F.
iyama, T. Matsumoto, K. Matoba, WO2009001942, 2009; d) K.
Matoba, WO 2009063910, 2009. type A.; e) G. P. Lahm, W. L.
Shoop, M. Xu, WO2007079162, 2007; f) J. K. Long, T. P. Selby,
M. Xu, WO2009045999, 2009; type B.; g) T. Mita, T. Kikuchi, T.
Mizukoshi, M. Yaosaka, M. Komoda, WO2005085216, 2005;
h) W. Zambach, P. Renold, WO2009049846, 2009; i) P. Renold,
W. Zambach, P. Maienfisch, M. Muehlebach, WO2009080250,
2009; j) T. Murata, Y. Yoneta, J. Mihara, K. Domon, M.
Hatazawa, K. Araki, E. Shimojo, K. Shibuya, T. Ichihara, U.
Goergens, A. Voerste, A. Becker, E. Franken, K. Mueller,
WO2009112275, 2009.
Furukawa, D. S. Reddy, Chem. Today 2009, 27, 38 – 42; d) N.
Shibata, S. Mizuta, T. Toru, J. Synth. Org. Chem. Jpn. 2008, 66,
215 – 228; e) N. Shibata, J. Synth. Org. Chem. Jpn. 2006, 64, 14 –
24.
Scheme 4. Synthesis of key type B compounds (see Figure 1).
Ros, E. Alvarez, H. Dietrich, R. Fernꢂndez, J. M. Lassaletta,
Synlett 2005, 2899 – 2904; g) Y. Brinkmann, R. J. Madhushaw, R.
4153 – 4155; j) M. Zielinska-Błajet, R. Kowalczyk, J. Skarzewski,
Tetrahedron 2005, 61, 5235 – 5240; k) A. Pohjakallio, P. M. Pihko,
[7] H. Kawai, A. Kusuda, S. Nakamura, M. Shiro, N. Shibata,
In summary, we have developed the first catalytic
enantioselective synthesis of trifluoromethyl-substituted
2-isoxazolines by a cinchona alkaloid-catalyzed asymmetric
hydroxylamine/enone cascade reaction consisting of conju-
gate addition/cyclization/dehydration reactions to provide the
medicinally important trifluoromethylated compounds.[3d]
Wide substrate generality, the flexibility to generate either
the S or R enantiomers, and high levels of enantioselectivity
have been achieved.[9]
˙
Received: April 7, 2010
Revised: May 27, 2010
Published online: July 7, 2010
Keywords: asymmetric catalysis · fluorine · heterocycles ·
.
organocatalysis · phase-transfer catalysis
[1] a) V. A. Petrov, Fluorinated Heterocyclic Compounds: Synthesis
Chemistry, and Applications, Wiley, Hoboken, NJ, 2009; b) P.
Kirsch, Modern Fluoroorganic Chemistry, Wiley-VCH, Wein-
heim, 2004; c) I. Ojima, J. R. MacCarthy, J. T. Welch, Biomedical
Frontiers of Fluorine Chemistry, American Chemical Society,
New York, 1996; d) R. Filler, Y. Kobayashi, L. M. Yagupolskii,
Organofluorine Compounds in Medicinal Chemistry and Bio
[9] Although the wisdom in using chloroform as a solvent with a
strong base such as CsOH might be questionable since dichlor-
ocarbene can be formed, an unexpected side reaction was not
Angew. Chem. Int. Ed. 2010, 49, 5762 –5766
ꢀ 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
5765