Organometallics 2010, 29, 4189–4192 4189
DOI: 10.1021/om100482w
Synthesis of Anionic Iron(II) Complex Bearing an N-Heterocyclic Carbene
Ligand and Its Catalysis for Aryl Grignard Cross-Coupling of Alkyl Halides
Huan-huan Gao, Chun-hui Yan, Xue-Ping Tao, Ying Xia, Hong-Mei Sun,*
Qi Shen, and Yong Zhang
The Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
Received May 17, 2010
Summary: The reaction of 1,3-bis(2,6-diisopropylphenyl)imida-
zol-2-ylidene (IPr) with one equivalent of a novel imidazolium salt
of iron(II), [FeBr3(C4H8O)](HIPr) C4H8O (1), afforded the
outstanding catalytic activity for cross-coupling reactions and
related transformations.3 However, in comparison with inten-
sively studied palladium-based complexes, the NHC complexes
of iron remain scarely considered in this respect,1i even if the
development of iron-based catalysts is of great interest due to
iron being more cost-effective and environmentally benign
compared to palladium.4
3
anionic iron(II) complex bearing an N-heterocyclic carbene ligand
[Fe(IPr)Br3](HIPr) C7H8 (2), which shows extremely high acti-
3
vity in comparison with the other iron(II)-based precatalysts in the
cross-coupling reaction of 4-tolylmagnesium bromide with cyclo-
hexyl bromide.
In fact, iron remains one of the least studied late transition
metals with NHCs.1i To date, only a few kinds of well-
defined iron NHC complexes have been reported, which
include hexacarbene complexes,5 tetracarbene complexes,6
tricarbene complexes,7 biscarbene complexes,8 and piano-
stool monocarbene complexes that are co-ligated by cyclo-
pentadienyl and CO ligands.9 Among them, only two bis-
Introduction
During the past decade, N-heterocyclic carbenes (NHCs)
have received increasing attention as alternative ligands for
the development of late transition metal based homogeneous
catalysts,1 which is mostly due to their advantages over tradi-
tional phosphine ligands such as stronger σ-electron donation,
tighter coordination, and more steric bulkiness.2 In most cases,
the replacement of phosphine ligands with electron-rich NHC
ligands is of benefit to improve the stability and catalytic activity
of their complexes. As a result, a large number of well-defined
NHC complexes of Pd(II), especially singly ligated NHC com-
plexes such as [(NHC)Pd(allyl)Cl]3a and [(NHC)PdCl2-
(pyr)] (pyr = 3-chloropyridine),3b have been found to show
8a
carbene complexes, i.e., Fe(NHC)2X2 and Fe(CNC)Br2
[CNC = 2,6-bis(imidazolylidene)pyridine],8b have been
found to show good catalytic activity for atom transfer radical
polymerization of styrene and methyl methacrylate8a and the
cross-coupling reaction of 4-tolylmagnesium bromide with
cyclohexyl bromide.10 Therefore, further study on the breadth
of iron-based NHC complexes, in parallel with the growing
interest for iron catalysis, is highly desired.1i
As a continuation of our research on the iron11 and
nickel12 chemistry of NHCs, we herein report the synthesis
€
(5) Frankel, R.; Kernbach, U.; Bakola-Christianopoulou, M.; Plaia,
*To whom correspondence should be addressed. Fax: (86)512-
65880305. Tel: (86)512-65880330. E-mail: sunhm@suda.edu.cn.
(1) For recent reviews see: (a) Bourissou, D.; Guerret, O.; Gabbaı,
F. P.; Bertrand, G. Chem. Rev. 2000, 100, 39–1203. (b) Herrmann, W. A.
Angew. Chem., Int. Ed. 2002, 41, 1290–1309. (c) Peris, E.; Crabtree, R. H.
Coord. Chem. Rev. 2004, 248, 2239–2246. (d) Crudden, C. M.; Allen, D. P.
Coord. Chem. Rev. 2004, 248, 2247–2273. (e) Pugh, D.; Danopoulos, A. A.
Coord. Chem. Rev. 2007, 251, 610–641. (f) Mata, J. A.; Poyatos, M.; Peris,
E. Coord. Chem. Rev. 2007, 251, 841–859. (g) W€urtz, S.; Glorius, F. Acc.
Chem. Res. 2008, 41, 1523–1533. (h) Boeda, F.; Nolan, S. P. Annu. Rep.
€
U.; Suter, M.; Ponikwar, W.; Noth, H.; Moinet, C.; Fehlhammer, W. P.
J. Organomet. Chem. 2001, 617-618, 530–545.
(6) McGuinness, D. S.; Gibson, V. C.; Steed, J. W. Organometallics
2004, 23, 6288–6292.
(7) (a) Nieto, I.; Cervantes-Lee, F.; Smith, J. M. Chem. Commun.
2005, 3811–3813. (b) Vogel, C.; Heinemann, F. W.; Sutter, J.; Anthon, C.;
Meyer, K. Angew. Chem., Int. Ed. 2008, 47, 2681–2684.
(8) (a) Louie, J.; Grubbs, R. H. Chem. Commun. 2000, 1479–1480. (b)
Danopoulos, A. A.; Tsoureas, N.; Wright, J. A.; Light, M. E. Organome-
tallics 2004, 23, 166–168. (c) Danopoulos, A. A.; Wright, J. A.; Motherwell,
W. B. Chem. Commun. 2005, 784–786. (d) Liu, B.; Xia, Q. Q.; Chen, W. Z.
Angew. Chem., Int. Ed. 2009, 48, 5513–5516.
ꢀ
Prog. Chem. Sect. B 2008, 104, 184–210. (i) Díez-Gonzalez, S.; Marion, N.;
Nolan, S. P. Chem. Rev. 2009, 109, 3612–3676.
€
(2) (a) Kuhl, O. Chem. Soc. Rev. 2007, 36, 592–607. (b) Hahn, F. E.; Jahnke,
M. C. Angew. Chem., Int. Ed. 2008, 47, 3122–3172. (c) Jacobsen, H.; Correa, A.;
Poater, A.; Costabile, C.; Cavallo, L. Coord. Chem. Rev. 2009, 253, 687–703.
(3) For recent reviews see: (a) Christmann, U.; Vilar, R. Angew.
Chem., Int. Ed. 2005, 44, 366–374. (b) Kantchev, E. A. B.; O'Brien, C. J.;
Organ, M. G. Angew. Chem., Int. Ed. 2007, 46, 2768–2813. (c) Marion, N.;
Nolan, S. P. Acc. Chem. Res. 2008, 41, 1440–1449.
(4) For recent reviews see: (a) Bolm, C.; Legros, J.; Paih, J. Le.; Zani,
L. Chem. Rev. 2004, 104, 6217–6254. (b) F€urstner, A.; Martin, R. Chem.
Lett. 2005, 34, 624–629. (c) Sherry, B. D.; F€urstner, A. Acc. Chem. Res.
2008, 41, 1500–1511. (d) Enthaler, S.; Junge, K.; Beller, M. Angew. Chem.,
Int. Ed. 2008, 47, 3317–3321. (e) Correa; Manchen, O. G.; Bolm, C. Chem.
Soc. Rev. 2008, 37, 1108–1117. (f) Plietker, B., Ed. Iron Catalysis in
Organic Chemistry; Wiley-VCH: Weinheim, 2008. (g) Czaplik, W. M.;
Mayer, M.; Jacobi von Wangelin, A. Angew. Chem., Int. Ed. 2009, 48, 607–
(9) (a) Buchgraber, P.; Toupet, L.; Guerchais, V. Organometallics
2003, 22, 5144–5147. (b) Llewellyn, S. A.; Green, M. L. H.; Green, J. C.;
Cowley, A. R. Dalton Trans. 2006, 2535–2541. (c) Mercs, L.; Labat, G.;
Neels, A.; Ehlers, A.; Albrecht, M. Organometallics 2006, 25, 5648–5656.
(10) Bedford, R. B.; Betham, M.; Bruce, D. W.; Danopoulos, A. A.;
Frost, R. M.; Hird, M. J. Org. Chem. 2006, 71, 1104–1110.
(11) (a) Chen, M. Z.; Sun, H. M.; Li, W. F.; Wang, Z. G.; Shen, Q.;
Zhang, Y. J. Organomet. Chem. 2006, 691, 2489–2494. (b) Wang, Y. S.; Sun,
H. M.; Tao, X. P.; Shen, Q.; Zhang, Y. Chin. Sci. Bull. 2007, 52, 3193–3199.
(12) (a) Sun, H. M.; Shao, Q.; Hu, D. M.; Li, W. F.; Shen, Q.; Zhang,
Y. Organometallics 2005, 24, 331–334. (b) Li, W. F.; Sun, H. M.; Chen,
M. Z.; Wang, Z. G.; Hu, D. M.; Shen, Q.; Zhang, Y. Organometallics 2005,
24, 5925–5928. (c) Li, W. F.; Sun, H. M.; Wang, Z. G.; Chen, M. Z.; Shen, Q.;
Zhang, Y. J. Organomet. Chem. 2005, 690, 6227–6232. (d) Sun, H. M.; Hu,
D. M.; Wang, Y. S.; Shen, Q.; Zhang, Y. J. Organomet. Chem. 2007, 692,
903–907. (e) Li, W. F.; Sun, H. M.; Chen, M. Z.; Shen, Q.; Zhang, Y.
J. Organomet. Chem. 2008, 693, 2047–2051.
ꢁ
610. (h) Czaplik, W. M.; Mayer, M.; Cvengros, J.; Jacobi von Wangelin, A.
ChemSusChem 2009, 2, 396–417. (i) Nakamura, E.; Yoshikai, N. J. Org.
Chem. 2010, DOI: 10.1021/jo100693m.
r
2010 American Chemical Society
Published on Web 08/26/2010
pubs.acs.org/Organometallics