2996
J. Su et al. / Bioorg. Med. Chem. 19 (2011) 2991–2996
except that it increases the hydrophobicity of its surrounding envi-
ronment (Fig. 7B).
work was supported by State Key Laboratory of Microbial Technol-
ogy, Shandong University and Grant of Hi-Tech Research and
Development Program of China (2006AA02A324). We thank the
support by National Nature Science Foundation of China (Grant
No. 30772654 and No. 90713041) and National High Technology
Research and Development Program of China (863 project; Grant
No. 2007AA02Z314). We also thank support by special fund for Ba-
sic Scientific Research of Central Colleges, South-Central University
for Nationalities (ZZQ10013).
3.3.2. Engineered factor F3 mutant has a bigger substrate
binding pocket than E. coli APN in complex with Bestatin
In the compound D24 complex structure, a part of the inhibitor
loses electron density. Thus the occupancy of compound D24 in
T. acidophilum factor F3 is not high. The compound D24 is designed
using E.coli aminopeptidase as a target model. This situation
provokes a very essential issue on whether the structural differen-
tation between E. coli APN and T. acidophilum factor F3 leads to a
less-effective inhibitor. A structural comparison of the active sites
of E. coli APN with Bestatin and factor F3 mutant with compound
D24 manifested that the former one (Fig. 8A) possesses narrower
pocket to accommodate the inhibitor, whereas the later one is
larger (Fig. 8B). This structural discrimination was mainly precipi-
tated by the distinctive amino acids around the binding cavity
(Fig. 8C, and D). At the substrate binding pocket, the replacement
of G352 of T. acidophilum factor F3 concluded a bulky binding
pocket. Furthermore, there are four additional different amino
acids within these two proteins. Consequently, the inhibitor de-
signed using E. coli APN as the model cannot tightly fasten the
engineered T. acidophilum factor F3. Structure-based sequence
alignment suggests that with these five amino acid substitutions,
the engineered T. acidophilum factor F3 could be the best mimic
of the hAPN as the drug design target.
Supplementary data
Supplementary data associated with this article can be found, in
Reference and notes
1. Liotta, LA.; Steeg, P. S.; Stetler-Stevenson, W. G. Cell 1991, 64, 327.
2. Dixon, J.; Kaklamanis, L.; Turley, H.; Hickson, I. D.; Leek, R. D.; Harris, A. L.;
Gatter, K. C. J. Clin. Pathol. 1994, 47, 43.
3. Sato, Y. Biol. Pharm. Bull. 2004, 27, 1763.
4. Fujii, H.; Nakajima, M.; Saiki, I.; Yoneda, J.; Azuma, I.; Tsuruo, T. Clin. Exp.
Metastasis 1995, 13, 337.
5. Saiki, I.; Fujii, H.; Yoneda, J.; Abe, F.; Nakajima, M.; Tsuruo, T.; Azuma, I. Int. J.
Cancer 1993, 54, 137.
6. Aoyagi, T.; Yoshida, S.; Nakamura, Y.; Shigihara, Y.; Hamada, M.; Takeuchi, T. J.
Antibiot. (Tokyo) 1990, 43, 417.
7. Rich, D. H.; Moon, B. J.; Harbeson, S. J. Med. Chem. 1984, 27, 417.
8. Yoshida, S.; Nakamura, Y.; Naganawa, H.; Aoyagi, T.; Takeuchi, T. J. Antibiot.
(Tokyo) 1990, 43, 149.
9. Addlagatta, A.; Gay, L.; Matthews, B. W. Proc. Natl. Acad. Sci. U.S.A. 2006, 103,
13339.
4. Conclusions
10. Ito, K.; Nakajima, Y.; Onohara, Y.; Takeo, M.; Nakashima, K.; Matsubara, F.; Ito,
T.; Yoshimoto, T. J. Biol. Chem. 2006, 281, 33664.
11. Nocek, B.; Mulligan, R.; Bargassa, M.; Collart, F.; Joachimiak, A. Proteins 2008,
70, 273.
12. Thunnissen Marjolein, M. G. M.; Par, Nordlund; Haeggstrom Jesper, Z. Nat.
Struct. Biol. 2001, 8, 131.
13. Kyrieleis, O. J.; Goettig, P.; Kiefersauer, R.; Huber, R.; Brandstetter, H. J. Mol. Biol.
2005, 349, 787.
14. Wang, Q.; Chen, M.; Zhu, H.; Zhang, J.; Fang, H.; Wang, B.; Xu, W. Bioorg. Med.
Chem. 2008, 16, 5473.
15. Zhang, Xiaopan; Fang, Hao; Zhu, Huawei; Wang, Xuejian; Zhang, Lei; Li,
Minyong; Li, Qianbin; Yuan, Yumei; Wenfang, Xu Bioorg. Med. Chem. 2010, 18,
5775.
16. Li, Qianbin; Fang, Hao; Wang, Xuejian; Xu, Wenfang Eur. J. Med. Chem. 2010, 45,
1618.
17. Li, Qianbin; Fang, Hao; Wang, Xuejian; Hu, Liping; Wenfang, Xu. Eur. J. Med.
Chem. 2009, 44, 4819.
18. Sambrook, J.; Fritsch, E. F.; Maniatis, T. Molecular Cloning: A Laboratory Manual,
2nd ed.; Cold Spring Harbor Laboratory Press: New York, 1989.
19. Herrera-Camacho, I.; Rosas-Murrieta, N. H.; Rojo-Dominguez, A.; Millan, L.;
Reyes-Leyva, J.; Santos-Lopez, G.; Suarez-Rendueles, P. FEBS J. 2007, 274, 6228.
20. Otwinowski, Z.; Minor, W. Methods Enzymol. 1997, 276, 307.
21. Project, C. C. Acta Crystallogr., Sect D 1994, 50, 216.
22. Adams, P. D.; Grosse-Kunstleve, R. W.; Hung, L. W.; Ioerger, T. R.; McCoy, A. J.;
Moriarty, N. W.; Read, R. J.; Sacchettini, J. C.; Sauter, N. K.; Terwilliger, T. C. Acta
Crystallogr., Sect. D Biol. Crystallogr. 2002, 58, 1948.
23. Emsley, P.; Cowtan, K. Acta Crystallogr., Sect. D Biol. Crystallogr. 2004, 60, 2126.
24. Tamura, N.; Lottspeich, F.; Baumeister, W.; Tamura, T. Cell 1998, 95, 637.
25. Laskowski, Roman A.; MacArthur, Malcolm W.; Moss, David S.; Thornton, Janet
M. J. Appl. Crystallogr. 1993, 26, 283.
An engineered factor F3 from T. acidophilum was planned to mi-
mic hAPN as an anti-cancer drug target here now. A new protein
generated by two point mutations on the native protein reveals
an active site identical to the counterpart of hAPN. On the basis
of this engineered protein, an known APN inhibitor, compound
D24, exhibits inhibition activity. The protein-inhibitor interactions
were characterized by biochemical and structural methods as well.
According to our observation, the two residues (Q101 and T261) in
point mutations experienced significant conformational changes in
compound D24 complex structure. This interesting evidence pro-
poses that these two point mutations are necessary for the engi-
neered protein to mimic hAPN. Subsequently, the comparison
between E. coli APN with Bestatin and factor F3 mutant with com-
pound D24 demonstrated that the former has a slighter cleft than
the factor F3 mutants. That’s the reason that the inhibitor designed
based on E. coli coordinate cannot securely buckle up the F3 mu-
tant. Therefore, engineered factor F3 can be functioned as a satis-
factory alternation of hAPN for drug design and screening. In
conclusion, our structure would like to provide a brand new start
point for the development of potent anti-cancer leads targeting
hAPN.
Acknowledgements
26. Luan, Yepeng; Wang, Xuejian; Zhu, Huawei; Qu, Xianjun; Fang, Hao; Xu,
Wenfang Lett. Drug Des. Disc. 2009, 6, 420.
We thank the staff at beam line BL17u1 at the Shanghai Syn-
chrotron Radiation facility for support with data collection. This
27. Shang, L.; Fang, H.; Zhu, H.; Wang, X.; Wang, Q.; Mu, J.; Wang, B.; Kishioka, S.;
Xu, W. Bioorg. Med. Chem. 2009, 17, 2775.