pubs.acs.org/Langmuir
© 2010 American Chemical Society
Diazirine-Modified Gold Nanoparticle: Template for Efficient Photoinduced
Interfacial Carbene Insertion Reactions
Hossein Ismaili, Soo Lee, and Mark S. Workentin*
Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7
Received June 29, 2010. Revised Manuscript Received August 12, 2010
Photolysis of a 3-aryl-3-(trifluoromethyl)diazirine-modified monolayer-protected gold nanoparticles (2-C12MPNs),
with a core size of 1.8 ( 0.3 nm, in the presence of model carbene trapping reagents leads to efficient, essentially quanti-
tative, modification of the interface via carbene insertion reactions. The utility of carbene insertion reactions as a general
approach for the modification of Au-MPNs to provide a breadth of new structures available was demonstrated using
acetic acid, methanol, benzyl alcohol, phenol, benzylamine, methyl acrylate, and styrene (10a-g, respectively) as
electrophilic carbene trapping agents to form the corresponding modified 3a-g-C12MPNs. The 1.8 ( 0.3 nm gold
nanoparticles bearing a diazirine group (2-C12MPNs) were synthesized using the ligand exchange reaction with
the requisite 3-aryl-3-(trifluoromethyl)diazirinealkylthiol. The 2-C12MPNs and the resulting products of the reaction on
the MPN (3a-g-C12MPN) were fully characterized by IR, 1H NMR, and 19F NMR spectroscopy and, when applicable,
transmission electron microscopy (TEM). Verification for the 3a-g-C12MPNs was accomplished by comparison of the
spectral data to those of obtained for the photoreactions of 3-(3-methoxyphenyl)-3-(trifluoromethyl)-3H-diazirine as
a model with 10a-g.
Introduction
metathesis polymerization (ROMP),9 coupling reaction of ali-
phatic hydroxyl group,10 reductive amination reaction,11 Michael
additions,12 1,3-dipolar cycloadditions,13 Diels-Alder reactions,14
Grignard reactions,15 and olefin cross-metathesis.16 While some
reactions are efficient at ambient temperatures, many reaction
types require refluxing conditions or catalysts and the low stability
of the Au-MPNs in the 1-5 nm in diameter size regime to higher
temperatures (>50 °C) and some catalysts limit the efficacy. The
need to perform reactions on Au-MPNs under relatively mild and
low temperature conditions limits the types of reactions that can be
done efficiently and quantitatively in these systems. In addition,
reactions of the monolayer moieties on the Au-MPNs are typically
slower (less efficient) relative to similar reactions in the solu-
tion phase because of the reaction environment provided at the
interface.12-15 Therefore, finding efficient interfacial reactions that
work under mild reaction conditions is an important challenge in
Au-MPNs applications. In our own attempts to extend the types
of reactions that can be utilized for efficient interfacial modi-
fications of Au-MPNs, we examined some Diels-Alder and
1,3-diploar cycloadditions. These particular reactions were
found to be generally too slow to be useful at ambient tempe-
ratures but showed that high pressure conditions can be used as
an efficient tool to facilitate these reactions on the Au-MPNs
with high yields and with no detrimental effects on the gold
core.13c,d,14
Monolayer-protected gold nanoparticles (Au-MPNs) continue
to be an active area of discovery because of their unique chemi-
cal and physical properties as well as potential applications in
catalysis,1 sensors,2 drug delivery,3 and nanomedicine.4 The key
to their use in any application is the ability to prepare Au-MPNs
with a specific chemical functionality for the interaction or
reaction required. The ability to chemically modify nanoparticles
by a direct interfacial reaction of terminal functional groups,
exposed on the surface of Au-MPNs, with various reactants is a
critical and important goal.5 Because of this, the chemical
modification of Au-MPNs has been the subject of numerous
studies, and a host of reaction types have been explored at the
interface, including esterifications,6 siloxane formation reaction,7
nucleophilic substitutions,8 transition-metal-catalyzed ring-opening
*Corresponding author. E-mail: mworkent@uwo.ca.
(1) (a) Corma, A.; Garcia, H. Chem. Soc. Rev. 2008, 37, 2096 and references
therein . (b) Juarez, R.; Corma, A.; García, H. Green Chem. 2009, 11, 949. (c) Conte, M.;
ꢀ
Miyamura, H.; Kobayashi, S.; Chechik, V. J. Am. Chem. Soc. 2009, 131, 7189. (d)
Raptis, C.; Garcia, H.; Stratakis, M. Angew. Chem., Int. Ed. 2009, 48, 3133.
(2) (a) Wang, Z.; Ma, L. Coord. Chem. Rev. 2009, 253, 1607 and references therein
. (b) Sperling, R. A.; Rivera, P. G.; Zhang, F.; Zanella, M.; Parak, W. J. Chem. Soc. Rev.
2008, 37, 1896 and references therein .
(3) (a) Ghosh, P.; Han, G.; De, M.; Kim, C. K.; Rotello, V. M. Adv. Drug
Delivery Rev. 2008, 60, 1307 and references therein . (b) Nakanishi, J.; Nakayama, H.;
Shimizu, T.; Ishida, H.; Kikuchi, Y.; Yamaguchi, K.; Horiike, Y. J. Am. Chem. Soc.
2009, 131, 3822. (c) Elbakry, A.; Zaky, A.; Liebl, R.; Rachel, R.; Goepferich, A.;
Breunig, M. Nano Lett. 2009, 9, 2059. (d) Prabaharan, M.; Grailer, J. J.; Pilla, S.;
Steeber, D. A.; Gong, S. Biomaterials 2009, 30, 6065.
Photochemical reactions of suitably functionalized Au-MPNs
can also be utilized to perform chemical modifications under
(4) Boisselier, E.; Astruc, D. Chem. Soc. Rev. 2009, 38, 1759.
(5) Daniel, M. C.; Astruc, D. Chem. Rev. 2004, 104, 293.
(6) Brust, M.; Fink, J.; Bethella, D.; Schiffrina, D. J.; Kielyb, C. J. Chem. Soc.,
(11) Otsuka, H.; Akiyama, Y.; Nagasaki, Y.; Kataoka, K. J. Am. Chem. Soc.
2001, 123, 8226.
Chem. Commun. 1995, 1655.
(12) Koenig, S.; Chechik, V. Langmuir 2003, 19, 9511.
(7) Buining, P. A.; Humbel, B. M.; Philipse, A. P.; Verkleij, A. J. Langmuir 1997,
13, 3921.
(8) Templeton, A. C.; Hostetler, M. J.; Kraft, C. T.; Murray, R. W. J. Am.
Chem. Soc. 1998, 120, 1906.
(9) Watson, K. J.; Zhu, J.; Nguyen, S. T.; Mirkin, C. A. J. Am. Chem. Soc. 1999,
121, 462.
(13) (a) Fleming, D. A.; Thode, C. J.; Williams, M. E. Chem. Mater. 2006, 18,
2327. (b) Sommer, W. J.; Weck, M. Langmuir 2007, 23, 11991. (c) Zhu, J.; Lines, B. M.;
Ganton, M. D.; Kerr, M. A.; Workentin, M. S. J. Org. Chem. 2008, 73, 1099. (d) Ismaili,
H.; Alizadeh, A.; Snell, K. E.; Workentin, M. S. Can. J. Chem. 2009, 87, 1708.
(14) Zhu, J.; Ganton., M.; Kerr, M. A.; Workentin, M. S. J. Am. Chem. Soc.
2007, 129, 4904.
(10) Friggeri, A.; Van Manen, H. J.; Auletta, T.; Li, X. M.; Zapotoczny, S.;
(15) Thode, C. J.; Williams, M. E. Langmuir 2008, 24, 5988.
(16) Ornelas, C.; Mery, D.; Cloutet, E.; Aranzaes, J. R.; Astruc, D. J. Am. Chem.
€
ꢀ
Schonherr, H.; Vancso, G. J.; Huskens, J.; Van Veggel, F. C. J. M.; Reinhoudt,
D. N. J. Am. Chem. Soc. 2001, 123, 6388.
Soc. 2008, 130, 1495.
14958 DOI: 10.1021/la102621h
Published on Web 08/24/2010
Langmuir 2010, 26(18), 14958–14964