F. Fu et al. / Inorganic Chemistry Communications 12 (2009) 657–659
659
Fig. 2. (a) 3D coordination framework of 1 with PtS topology (color codes: blue for 4-connected tetrahedral nodes, yellow for 4-connected square-planar nodes); (b) Space-
filling view of the 2-fold interpenetration in 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
[6] M. Du, Z.H. Zhang, L.F. Tang, X.G. Wang, X.J. Zhao, S.R. Batten, Chem. Eur. J. 13
(2007) 2578.
value of 23.14% and also confirmed by the powder X-ray diffraction
[7] C.Y. Su, A.M. Goforth, M.D. Smith, P.J. Pellechia, H.C.Z. Loye, J. Am. Chem. Soc.
be ZnO (found weight 23.02), which is supported by the expected
(PXRD) patterns (Fig. S6, beyond 400 °C, the diffraction peaks of
ZnO appear). Notably, the XRPD measurement is in accordance
with the TGA analyses. In addition, photoluminescence property
of powder samples of 1 has also been examined at room tempera-
ture (Fig. S7). Up on the excitation at 300 nm, complex 1 exhibits
an intense emission at 413 nm, while the free H2ADB ligand dis-
plays weak luminescence at 422 nm. The luminescent behavior
of 1 is such that its high-dimensional condensed polymeric struc-
ture leads to significant enhancement of fluorescence intensity
compared to the free ligand. The blue-shift (about 9 nm) of this
emission bands with respect to the free H2ADB ligand is probably
126 (2004) 3576.
[8] O.M. Yaghi, M. O’Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, J. Kim, Nature
423 (2003) 705.
[9] Z.G. Li, G.H. Wang, H.Q. Jia, N.H. Hu, J.W. Xu, Cryst. Eng. Commun. 9 (2007) 882.
[10] X. Li, X.W. Wang, Y.H. Zhang, Inorg. Chem. Commun. 11 (2008) 832.
[11] H. Li, M. Eddaoudi, M. O’Keeffe, O.M. Yaghi, Nature 402 (1999) 276.
[12] J. Kim, B. Chen, T.M. Reineke, H. Li, M. Eddaoudi, D.B. Moler, M. O’Keeffe, O.M.
Yaghi, J. Am. Chem. Soc. 123 (2001) 8239.
[13] H. Li, M. Eddaoudi, T.L. Groy, O.M. Yaghi, J. Am. Chem. Soc. 120 (1998) 8571.
[14] Z. Shi, G. Li, L. Wang, L. Gao, X. Chen, J. Hua, S. Feng, Cryst. Growth Des. 4 (2004)
25.
[15] N.L. Rosi, M. Eddaoudi, J. Kim, M. O’Keeffe, O.M. Yaghi, Angew. Chem. Int. Ed.
41 (2002) 284.
[16] N.L. Rosi, J. Kim, M. Eddaoudi, B. Chen, M. O’Keeffe, O.M. Yaghi, J. Am. Chem.
Soc. 127 (2005) 1504.
[17] W.P. Wu, Y.Y. Wang, Y.P. Wu, J.Q. Liu, X.R. Zeng, Q.Z. Shi, S.M. Peng, Cryst. Eng.
Commun. 9 (2007) 753.
[18] X.L. Chen, B. Zhang, H.M. Hu, F. Fu, X.L. Wu, T. Qin, M.L. Yang, G.L. Xue, J.W.
Wang, Cryst. Growth Des. 8 (2008) 3706.
[19] H.A. Habib, J. Sanchiz, C. Janiak, Dalton Trans. (2008) 1734.
[20] X.L. Wang, C. Qin, E.B. Wang, L. Xu, Z.M. Su, C.W. Hu, Angew. Chem. Int. Ed. 43
(2004) 5036.
[21] X.L. Wang, C. Qin, E.B. Wang, L. Xu, Cryst. Growth Des.
2061.
*
*
due to the (
p
–p) transitions changing into the (
p
–n) transitions
after forming the coordination polymer. The enhanced lumines-
cence efficiency is therefore attributed to ADB coordinated to ZnII
ions resulting in a decrease in the nonradiative decay of intraligand
excited states [24,34,35].
In summary, we have prepared and characterized an unusual 2-
fold interpenetration 3D PtS framework assembled from circular
and rhombic tubular building blocks. Meanwhile, the first hydro-
gen-bonded –O–metal–O– chains were formed between the inter-
penetrated frameworks. In addition, complex 1 shows strong
fluorescent emission. Further studies for the construction of novel
coordination polymers with unusual topologies and interesting
physical properties, by reacting long spacer ligand and different
metal ions, are progress.
6 (2006)
[22] Synthesis of [Zn(ADB)(H2O)]n (1): A mixture of Zn(NO3)2ꢀ6H2O (0.5 mmol,
0.149 g), H2ADB (0.5 mmol, 0.123 g), triethylamine (0.15 mL), and deionized
water (9 mL) was stirred for 20 min in air, then transferred and sealed in a
23 mL Parr Teflon-lined stainless steel vessel, which was heated at 120 °C for
6 days, and then cooled to room temperature. Orange yellow crystals were
obtained (yield 66%). Elemental analysis calc. for C14H10N2O5Zn (%): C, 47.82;
H, 2.87; N, 7.97. Found: C, 47.78; H, 2.89; N, 7.94. Selected IR(KBr) spectra for
1:
m
(cmꢂ1) 3152 (s), 1598 (m), 1542 (m), 1419 (m), 1397 (m), 1073(w),
1010(w),772(m),724 (w), 679 (w), 642(w).
[23] Crystal diffraction intensities for 1 were collected at 293(2) K with a Siemens
Acknowledgements
SMART system equipped with
a CCD detector with Mo Ka radiation at
0.71073 Å. Absorption corrections were applied using SADABS program. The
structure was solved with direct methods and refined with the full-matrix
least-squares technique based on F2 using the SHELXTL program package.
Anisotropic thermal parameters were applied to all non-hydrogen atoms. The
hydrogen atoms were placed in constrained positions with isotropic
temperature factors. Crystal data: formula C14H10N2O5Zn, M = 351.62,
Monoclinic, space group P2/c, with a = 14.6000(2) Å, b = 6.4230(15) Å,
This work was financially supported by the National Natural
Science Foundation of China (No. 20773104), the Program for
New Century Excellent Talents in University (NCET-06-0891), the
Key Project of Key Laboratory of Shaanxi Province (08JZ81), the
Important Project of Hubei Provincial Education Office
(Z20091301), and the Natural Science Foundation of Hubei/Sha-
anxi Provinces of China (2008CBD030/SJ08B11).
c = 7.3600(16) Å,
a
= 90ꢀ, b = 91.040(2ꢀ),
c
l
= 90ꢀ, V = 690.08(24) Å3, T = 293(2) K,
= 1.805 mmꢂ1, the final R1 = 0.0730,
Z = 2, F(0 0 0) = 356, Dc = 1.692 g cmꢂ3
,
wR2 = 0.2253 (all data), and GOF = 1.019.
[24] O.D. Friedrichs, M. O’Keeffe, O.M. Yaghi, Solid State Sci. 5 (2003) 73.
[25] M. Du, X.J. Zhao, J.H. Guo, S.R. Batten, Chem. Commun. (2005) 4836.
[26] B.F. Abrahams, B.F. Hoskins, D.M. Michail, R. Robson, Nature 369 (1994)
727.
Appendix A. Supplementary material
[27] R.A. Heintz, H. Zhao, X. Ouyang, G. Grandinetti, J. Cowen, K.R. Dunbar, Inorg.
Chem. 38 (1999) 144.
[28] S.A. O’Kane, R. Clerac, H. Zhao, X. Ouyang, J.R. Galan-Mascaros, R. Heintz, K.R.
Dunbar, J. Solid State Chem. 152 (2000) 159.
Supplementary data associated with this article can be found, in
[29] P. Grosshans, A. Jouaiti, M.W. Hosseini, N. Kyritsakas, New J. Chem. 27 (2003)
793.
References
[30] K.I. Nattinen, K. Rissanen, Inorg. Chem. 42 (2003) 5126.
[31] R. Natarajan, G. Savitha, P. Dominiak, K. Wozniak, J.N. Moorthy, Angew. Chem.
Int. Ed. 44 (2005) 2115.
[32] P. Losier, M.J. Zaworotko, Angew. Chem. Int. Ed. 35 (1996) 2779.
[33] S.Q. Zang, Y. Su, Y.Z. Li, Z.P. Ni, H.Z. Zhu, Q.J. Meng, Inorg. Chem. 45 (2006)
3855.
[1] D. Maspoch, D.R. Molina, J. Veciana, Chem. Rev. 36 (2007) 770.
[2] N.W. Ockwig, O.D. Friedrichs, M. O’Keeffe, O.M. Yaghi, Acc. Chem. Res. 38
(2005) 176.
[3] E.R. Parnham, R.E. Morris, Acc. Chem. Res. 40 (2007) 1005.
[4] B. Zheng, H. Dong, J. Bai, Y. Li, S. Li, M. Scheer, J. Am. Chem. Soc. 130 (2008)
7778.
[34] C. Janiak, Dalton Trans. (2003) 2781.
[35] S.-L. Zheng, X.-M. Chen, Aust. J. Chem. 57 (2004) 703.
[5] F. Fu, D.S. Li, C.Q. Zhang, J.J. Wang, Y.P. Wu, M. Du, J.W. Wang, Inorg. Chem.
Commun. 11 (2008) 1260.