C O M M U N I C A T I O N S
Table 2. Substrate Variation of 2-Phenylbenzoic Acidsa b
,
precluded because of its pseudosymmetrical nature, which is not
in agreement with the obtained high levels of selectivity (7:1).
Alternatively, carboxylic acid directed C-D activation might occur,
providing VI. Whereas decarboxylation to III (path c) can be
excluded (see above), the carbopalladation/decarboxylation/reduc-
tive elimination sequence (path d) is in agreement with the
experimental observations.11 Finally, Pd0 is reoxidized to PdII by
the AgI oxidant, thus closing the catalytic cycle (not shown).
In conclusion, we have developed the first palladium-catalyzed
formal [4 + 2] annulation of 2-phenylbenzoic acids with alkynes
via successive cleavage of both C-H and C-C bonds, obviating
the need for organometallic and halide coupling partners. This
methodology might find application in the synthesis of polycyclic
aromatic hydrocarbons (PAHs) for material science.12
Acknowledgment. Generous financial support by the Alexander
von Humboldt Foundation (C.W.) and the International NRW
Graduate School of Chemistry (S.R.) is gratefully acknowledged.
The research of F.G. was supported by the Alfried Krupp Prize for
Young University Teachers of the Alfried Krupp von Bohlen und
Halbach Foundation.
a Reaction conditions: 1 (0.5 mmol), 2 (1.0 mmol), Pd(OAc)2 (0.05
mmol), acridine (0.25 mmol), Ag2CO3 (1.5 mmol), DMF (5 mL), 140
°C, 14 h. b Yield of the isolated, pure product. c The isolated yields of
minor products 4 are listed in brackets. d Combined yield of two
regioisomers 3c and 3f in the ratio of 2:1 (major isomer shown).
e Combined yield of two regioisomers 3e and 3e′ in the ratio of 1:1 (one
isomer shown). f The ratio of two regioisomers are listed in brackets.
Supporting Information Available: Experimental procedures and
full spectroscopic data for all new compounds. This material is available
References
Scheme 2. Plausible Mechanism
(1) For reviews on the coupling via C-C bond cleavage, see: (a) Yorimitsu,
H.; Oshima, K. Bull. Chem. Soc. Jpn. 2009, 82, 778. (b) Bonesi, S. M.;
Fagnoni, M.; Albini, A. Angew. Chem., Int. Ed. 2008, 47, 10022. (c) Park,
Y. J.; Park, J.-W.; Jun, C.-H. Acc. Chem. Res. 2008, 41, 222. (d) Catellani,
M.; Motti, E.; Della Ca’, N. Acc. Chem. Res. 2008, 41, 1512. (e) Nakao,
Y.; Hiyama, T. Pure Appl. Chem. 2008, 80, 1097. (f) Tobisu, M.; Chatani,
N. Chem. Soc. ReV. 2008, 37, 300. (g) Satoh, T.; Miura, M. Top. Organomet.
Chem. 2007, 24, 61. (h) Murakami, M.; Makino, M.; Ashida, S.; Matsuda,
T. Bull. Chem. Soc. Jpn. 2006, 79, 1315.
(2) For an excellent review, see: Goossen, L. J.; Rodr´ıguez, N.; Goossen, K.
Angew. Chem., Int. Ed. 2008, 47, 3100.
(3) For leading references in decarboxylative Heck reactions, see: (a) Tanaka,
D.; Romeril, A. S. P.; Myers, A. G. J. Am. Chem. Soc. 2005, 127, 10323.
(b) For decarboxylative couplings of aromatic carboxylic acids, see:
Goossen, L. J.; Deng, G.; Levy, L. M. Science 2006, 313, 662. (c) Goossen,
L. J.; Rodriguez, N.; Lange, P. P.; Linder, C. Angew. Chem., Int. Ed. 2010,
49, 1111. (d) Shang, R.; Fu, Y.; Wang, Y.; Xu, Q.; Yu, H.-Z.; Liu, L.
Angew. Chem., Int. Ed. 2009, 48, 9350. (e) Becht, J.-M.; Le Drian, C.
Org. Lett. 2008, 10, 3161. For decarboxylative couplings of heteroaromatic
carboxylic acids, see: (f) Forgione, P.; Brochu, M.-C.; St-Onge, M.; Thesen,
K. H.; Bailey, M. D.; Bilodeau, F. J. Am. Chem. Soc. 2006, 128, 11350.
(g) Miyasaka, M.; Fukushima, A.; Satoh, T.; Hirano, K.; Miura, M.
Chem.sEur. J. 2009, 15, 3674.
(4) For recent examples using carboxylic acids as directing groups, see: (a)
Wang, D.-H.; Engle, K. M.; Shi, B.-F.; Yu, J.-Q. Science 2010, 327, 315.
(b) Shi, B.-F.; Zhang, Y.-H.; Lam, J. K.; Wang, D.-H.; Yu, J-.Q. J. Am.
Chem. Soc. 2010, 132, 460. (c) Chiong, H. A.; Pham, Q.-N.; Daugulis, O.
J. Am. Chem. Soc. 2007, 129, 9879. (d) Mochida, S.; Hirano, K.; Satoh,
T.; Miura, M. J. Org. Chem. 2009, 74, 6295. (e) Shimizu, M.; Hirano, K.;
Satoh, T.; Miura, M. J. Org. Chem. 2009, 74, 3478. (f) Yamashita, M.;
Horiguchi, H.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2009, 74,
7481.
benzoic acids and alkynes in high regioselectivities (g10:1), which
provided important insight into the mechanism of these reactions
(vide infra).
(5) (a) Voutchkova, A.; Coplin, A.; Leadbeater, N. E.; Crabtree, R. H. Chem.
Commun. 2008, 6312. (b) Wang, C.; Piel, I.; Glorius, F. J. Am. Chem.
Soc. 2009, 131, 4194. (c) Yu, W.-Y.; Sit, W. N.; Zhou, Z.; Chan, A. S.-C.
Org. Lett. 2009, 11, 3174. (d) Cornella, J.; Lu, P.; Larrosa, I. Org. Lett.
2009, 11, 5506. (e) Zhang, F.; Greaney, M. F. Angew. Chem., Int. Ed.
2010, 49, 2768. (f) Xie, K.; Yang, Z.; Zhou, X.; Li, X.; Wang, S.; Tan, Z.;
An, X.; Guo, C.-C. Org. Lett. 2010, 12, 1564. (g) Zhou, J.; Hu, P.; Zhang,
M.; Huang, S. J.; Wang, M.; Su, W. P. Chem.sEur. J. 2010, 16, 5876.
(6) For representative syntheses of phenanthrene dervatives using organohalides
or organometallic reagents, see: (a) Larock, R. C. Pure Appl. Chem. 1999,
71, 1435. (b) Shimizu, M.; Nagao, I.; Tomioka, Y.; Hiyama, T. Angew.
Chem., Int. Ed. 2008, 47, 8096, and references therein.
Furthermore, two mechanistically insightful results were obtained.
First, the reaction of D5-1 with 1-phenyl-1-butyne 2a provided
products D4-3/D4-3′ in a ratio of 7:1. Second, an intermolecular
kinetic isotope effect (KIE) was determined to be 4.0,7 rendering
an electrophilic aromatic palladation for the C-H activation step
unlikely.9 These results are in agreement with two different
mechanistic pathways (Scheme 2, paths a and d). Pd- or Ag-
catalyzed (the latter one followed by transmetalation to Pd)
decarboxylation of D5-1 would afford metalated species I.3,10 Two
pathways might take place at this stage. One is the carbopalladation
of alkyne to give vinylpalladium species II,11 which then undergoes
intramolecular C-D activation leading to palladacycle IV (path
a), followed by reductive elimination. Alternatively, C-D activation
in I would give palladacycle III (path b); however, this can be
(7) For more details, see Supporting Information.
(8) (a) Ferreira, E. M.; Stoltz, B. M. J. Am. Chem. Soc. 2003, 125, 9578. (b)
Zhang, Y.-H.; Shi, B.-F.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131, 5072.
(9) For mechanistically insightful examples, see: (a) Garc´ıa-Cuadrado, D.; de
Mendoza, P.; Braga, A. A. C.; Maseras, F.; Echavarren, A. M. J. Am. Chem.
Soc. 2007, 129, 6880. (b) Gorelsky, S. I.; Lapointe, D.; Fagnou, K. J. Am.
Chem. Soc. 2008, 130, 10848. (c) Do, H.-Q.; Daugulis, O. J. Am. Chem.
Soc. 2008, 130, 1128.
(10) (a) Goossen, L. J.; Linder, C.; Rodriguez, N.; Lange, P. P.; Fromm, A.
Chem. Commun. 2009, 7173. (b) Cornella, J.; Sanchez, C.; Banawa, D.;
9
J. AM. CHEM. SOC. VOL. 132, NO. 40, 2010 14007