Angewandte
Chemie
Scheme 3. a) [Pd2(dba)3] (2 mol%), 1 (4 mol%), NaOtBu (3.5 equiv), dry toluene (10 mL), in an argon atmosphere. 7a, R1 =CH3, R2 =H (78%);
7b, R1 =4-OMe, R2 =H (79%).
[4] a) J. S. Yang, C. Y. Hwang, C. C. Hsich, S. Y. Chiou, J. Org.
Chem. 2004, 69, 719 – 726; b) J. S. Yang, Y. D. Lin, F. L. Liao, J.
Org. Chem. 2004, 69, 3517 – 3525; c) J. S. Yang, K. L. Liau, C. M.
Wang, C. Y. Hwang, J. Am. Chem. Soc. 2003, 125, 12325 – 12335.
[5] X. D. Cao, X. Q. Zhou, Q. M. Dong, Q. He, D. Z. Liu, Jingxi
Huagong 2003, 20, 452 – 454.
[6] a) S. Sengupta, S. K. Sadhukaran, S. Muhuri, Tetrahedron Lett.
2002, 43, 3521 – 3524; b) T. C. Lin, G. S. He, P. N. Prasad, L. S.
Tan, J. Mater. Chem. 2004, 14, 982 – 991.
[7] For general references, see; a) J. Tsuji, Palladium Reagents and
Catalysis: Innovations in Organic Synthesis, Wiley, Chichester,
1995; b) Handbook of Organopalladium Chemistry for Organic
Synthesis (Eds.: E.-I. Negishi, A. de Meijere), Vols. 1 and 2,
Wiley, New York, 2002.
[8] a) J. F. Hartwig, Acc. Chem. Res. 1998, 31, 852 – 860; b) J. F.
Hartwig, Angew. Chem. 1998, 110, 2154 – 2177; Angew. Chem.
Int. Ed. 1998, 37, 2046 – 2067; c) J. P. Wolfe, S. Wagaw, J. F.
Marcoux, S. L. Buchwald, Acc. Chem. Res. 1998, 31, 805 – 818;
d) A. R. Muci, S. L. Buchwald, Top. Curr. Chem. 2002, 219, 131 –
209.
(Scheme 3). Our yield of 78% for 7a is lower than that of a
previously reported synthesis involving the reaction of 4-(N-
(4-methylphenyl)-N-phenylamino)benzaldehyde and diethyl-
benzylphosphonate (91%).[1] It should be noted that this
higher yield was achieved in a single reaction involving two
reactants, one of which required prior synthesis. When this
requirement is taken into consideration, the overall yield is
50%[21] compared with our yield of 78% from a one-pot
procedure. Although 7b has been reported previously, no
yield was given.[1]
In summary, we have developed a novel one-pot method-
ology for the synthesis of trans 4-N,N-diaryl aminostilbenes 5,
which hitherto have always been synthesized in multipot
processes. It is also of note that: 1) the same catalyst system is
used for both the amination and the intermolecular Heck
coupling in a loading that is quite low (2 mol% of [Pd2(dba)3]
and 4 mol% of the ligand); 2) ligand 1 is superior to others in
our protocol and is commercially available; 3) selective
coupling of aryl halides with the nitrogen atom and the
double bond of the styrenyl substrate can be achieved in a
one-pot reaction by merely adding aryl halides sequentially at
different temperatures. This strategy has significant potential
for the design and synthesis of many complex molecules and
[9] F. A. Beland, F. F. Kadlubar, Handbook of Experimental Phar-
macology, Carcinogenesis and Mutagenesis, Grove, Springer,
Heidelberg, 1990.
[10] D. R. Waring, G. Hallas, The Chemistry and Application of Dyes,
Plenum, New York, 1990.
[11] CRC Handbook of Pesticides (Ed.: G. W. Milne), CRC, Boca
Raton, FL, 1994.
À
for combinatorial libraries in which moieties with both C N
[12] a) T. Mukundan, Macromol. Mater. Eng. 2002, 287, 442; b) T. A.
Skotheim, R. L. Elsenbaumer, J. R. Reynolds, Handbook of
Conducting Polymers, 2nd ed., Marcel Dekker, New York, 1997.
[13] Proazaphosphatranes, such as 1, are commercially available
from Aldrich, Strem, and Digital Specialty Chemicals.
[14] a) S. Urgaonkar, M. Nagarajan, J. G. Verkade, J. Org. Chem.
2003, 68, 452 – 459; b) S. Urgaonkar, M. Nagarajan, J. G.
Verkade, Org. Lett. 2003, 5, 815 – 818.
À
and C C bonds are present; 4) higher overall yields than
those reported previously have been achieved; 5) the reduc-
tion in the number of steps in such syntheses permit these
types of transformations to be potentially more economical
and environmentally friendly. Studies are under way with
heteroaryl halides and additional aryl halides (including
chlorides) as reagents in the methodology reported herein
and will be reported in due course.
[15] S. Urgaonkar, M. Nagarajan, J. G. Verkade, Tetrahedron Lett.
2002, 43, 8921 – 8924.
[16] a) W. Su, S. Urgaonkar, J. G. Verkade, Org. Lett. 2004, 6, 1421 –
1424; b) W. Su, S. Urgaonkar, J. G. Verkade, J. Am. Chem. Soc.
2004, 126, 16433 – 16439.
Received: December 15, 2004
Published online: April 14, 2005
[17] For recent reviews, see: a) J. G. Verkade, Top. Curr. Chem. 2003,
223, 1 – 44; b) J. G. Verkade, P. B. Kisanga, Aldrichimica Acta
2004, 37, 3 – 14; c) J. G. Verkade, P. B. Kisanga, Tetrahedron
2003, 59, 7819 – 7853.
À
Keywords: amination · C C coupling · cross-coupling ·
Heck reaction · palladium
.
[18] a) S. D. Edmondson, A. Mastraechio, E. R. Parmee, Org. Lett.
2000, 2, 1109 – 1112; b) P. Matyus, B. U. W. Maes, Z. Riedl, G.
Hajos, G. L. F. Lemiere, P. Tapolcsanyi, K. Monsieurs, O. Elias,
R. A. Dommisse, G. Krajsovszky, Synlett 2004, 7, 1123 – 1139;
c) G. Cuny, M. B. Choussy, J. Zgu, Angew. Chem. 2003, 115,
4922 – 4925; Angew. Chem. Int. Ed. 2003, 42, 4774 – 4777; d) V.
Khedkar, A. Tillack, M. Michalik, M. Beller, Tetrahedron Lett.
2004, 45, 3123 – 3126; e) H. Siebeneicher, I. Bytschkov, S. Doye,
Angew. Chem. 2003, 115, 3151 – 3153; Angew. Chem. Int. Ed.
2003, 42, 3042 – 3044; f) K. Yamazaki, Y. Nakamura, Y. Kondo, J.
Chem. Soc. Perkin Trans. 1 2002, 2137 – 2138.
[1] a) M. Sasaki (Ricoh Co., Japan), Ger. Offen., 1983, 97, Patent
Application DE 83-3315437 19830428Chem. Abstr. 1985, 100,
112236; b) Y. Oda, T. Homma, F. Yoshihide, Denshi Shashin
Gakkaishi 1990, 29, 250 – 258; c) Y. Fujimaki, H. Tadokoro, Y.
Oda, H. Yoshioka, T. Homma, H. Moriguchi, K. Watanabe, A.
Konishita, N. Hirose, J. Imaging Technol. 1991, 17, 202 – 206.
[2] J. S. Yang, S. Y. Chiou, K. L. Lia, J. Am. Chem. Soc. 2003, 125,
2518 – 2527.
[3] J. S. Yang, Y. H. Lin, C. S. Yang, Org. Lett. 2002, 4, 777 – 780.
Angew. Chem. Int. Ed. 2005, 44, 3115 –3118
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3117