Organometallics 2010, 29, 4193–4195 4193
DOI: 10.1021/om100571w
Single-Step Synthesis of Secondary Phosphine Oxides
Aaron J. Bloomfield, Jack M. Qian, and Seth B. Herzon*
Department of Chemistry, Yale University, New Haven, Connecticut 06520
Received June 9, 2010
Summary: We report that in the presence of trifluoroacetic
other phosphorus-containing reagents. For example, they
are easily elaborated to tertiary phosphine oxides,10 and both
secondary and tertiary phosphine oxides can be reduced in
high yields to form the cooresponding phosphines.11,12
acid primary phosphines undergo efficient addition to alde-
hydes to form the corresponding secondary phosphine oxides in
47-97% yield. This transformation is compatible with aryl
and alkyl phosphines, as well as a broad range of aldehydes,
including formaldehyde. By using 1,5-dialdehydes as reaction
partners, the addition provides a straightforward route to
bis(phosphine oxides), which are difficult to prepare by alter-
native methods. In the presence of boron trifluoride diethyl
etherate as reagent, benzophenone was shown to couple to
phenylphosphine and cyclohexylphosphine in 92% and 72%
yield, respectively. Twenty-three examples are presented.
In the course of our research we required access to complex
secondary phosphine oxides. Established methods for their
synthesis, such as alkylation of primary phosphine-borane
complexes,13 followed by deprotection and oxidation, or the
addition of organometal reagents to dialkyl phosphonates,14
did not provide the generality we required. In 1962, Epstein
and Buckler reported that heating of primary phosphines
and aldehydes or ketones in mineral acids formed R-hydroxy
tertiary phosphine oxides (4; eq 2).15-17 These reactions were
suggested to proceed via the secondary phosphine oxide, but
in only two instances could the reaction be stopped at this
stage. Namely, the addition of cyclohexylphosphine to cy-
clohexanone in refluxing concentrated hydrochloric acid
formed dicyclohexylphosphine oxide in 52% yield. Under
Secondary phosphine oxides are an important class of
reagents that find many applications in synthesis and
catalysis.1 Secondary phosphine oxides exist as a tautomeric
mixture of P(V) (1) and P(III) (2) isomers, with the air-stable
P(V) tautomer 1 predominating under ambient conditions
(eq 1).2 In the presence of a metal this equilibrium is driven
toward the P(III) tautomer via coordination.3 The phosphi-
nous acid complexes so formed (3) are active catalysts for
cross-coupling,4 hydrogenation,5 allylic alkylation,6 and
C-H arylation reactions.7,8 Racemic secondary phosphine
oxides are readily resolved using derivatives of tartaric acid.9
Secondary phosphine oxides may also serve as precursors to
(10) (a) Haynes, R. K.; Au-Yeung, T.-L.; Chan, W.-K.; Lam, W.-L.;
Li, Z.-Y.; Yeung, L.-L.; Chan, A. S. C.; Li, P.; Koen, M.; Mitchell, C. R.;
Vonwiller, S. C. Eur. J. Org. Chem. 2000, 3205. (b) Trofimov, B. A.;
Sukhov, B. G.; Malysheva, S. F.; Belogorlova, N. A.; Arbuzova, S. N.; Tunik,
S. P.; Gusarova, N. K. Russ. J. Org. Chem. 2004, 40, 129. (c) Hirai, T.; Han,
L.-B. Org. Lett. 2007, 9, 53.
(11) Selected methods for the reduction of secondary phosphine
oxides: (a) Busacca, C. A.; Lorenz, J. C.; Grinberg, N.; Haddad, N.;
Hrapchak, M.; Latli, B.; Lee, H.; Sabila, P.; Saha, A.; Sarvestani, M.;
Shen, S.; Varsolona, R.; Wei, X.; Senanayake, C. H. Org. Lett. 2005, 7,
4277. (b) Berthod, M.; Favre-Reguillon, A.; Mohamad, J.; Mignani, G.;
Docherty, G.; Lemaire, M. Synlett 2007, 1545.
*To whom correspondence should be addressed. E-mail: seth.
(1) Berlin, K. D.; Butler, G. B. Chem. Rev. 1960, 60, 243.
(2) For studies and discussions of the factors effecting this equilibri-
um, see: (a) Brass, H. J.; DiPrete, R. A.; Edwards, J. O.; Lawler, R. G.;
Curci, R.; Modena, G. Tetrahedron 1970, 26, 4555. (b) Hoge, B.;
€
Neufeind, S.; Hettel, S.; Wiebe, W.; Thosen, C. J. Organomet. Chem.
2005, 690, 2382. (c) Hoge, B.; Garcia, P.; Willner, H.; Oberhammer, H.
Chem. -Eur. J. 2006, 12, 3567.
(3) Walther, B. Coord. Chem. Rev. 1984, 60, 67.
(4) (a) Li, G. Y.; Zheng, G.; Noonan, A. F. J. Org. Chem. 2001, 66,
8677. (b) Li, G. Y. J. Organomet. Chem. 2002, 653, 63. (c) Li, G. Y. J. Org.
Chem. 2002, 67, 3643. (d) Ackermann, L.; Born, R.; Spatz, J. H.; Meyer, D.
Angew. Chem., Int. Ed. 2005, 44, 7216. (e) Xu, H.; Ekoue-Kovi, K.; Wolf, C.
J. Org. Chem. 2008, 73, 7638. (f) Yang, D. X.; Colletti, S. L.; Wu, K.; Song,
M.; Li, G. Y.; Shen, H. C. Org. Lett. 2009, 11, 381. (g) Ackermann, L.;
Kapdi, A. R.; Schulzke, C. Org. Lett. 2010, 12, 2298.
(5) (a) Guillen, F.; Rivard, M.; Toffano, M.; Legros,
J.-Y.; Daran, J.-C.; Fiaud, J.-C. Tetrahedron 2002, 58, 5895. (b) Jiang,
X.-b.; Minnaard, A. J.; Hessen, B.; Feringa, B. L.; Duchateau, A. L. L.;
Andrien, J. G. O.; Boogers, J. A. F.; de Vries, J. G. Org. Lett. 2003, 5, 1503.
(c) Jiang, X.-b.; van den Berg, M.; Minnaard, A. J.; Feringa, B. L.; de Vries,
J. G. Tetrahedron: Asymmetry 2004, 15, 2223.
(6) Dai, W.-M.; Yeung, K. K. Y.; Leung, W. H.; Haynes, R. K.
Tetrahedron: Asymmetry 2003, 14, 2821.
(7) (a) Ackermann, L. Org. Lett. 2005, 7, 3123. (b) Ackermann, L.;
Vicente, R.; Hofmann, N. Org. Lett. 2009, 11, 4274.
(8) For selected reviews, see: (a) Dubrovina, N. V.; Boerner, A. Angew.
Chem., Int. Ed. 2004, 43, 5883. (b) Ackermann, L. Synthesis 2006, 1557.
(c) Ackermann, L. Phosphorus Ligands Asymmetric Catal. 2008, 2, 831.
(9) Holt, J.; Maj, A. M.; Schudde, E. P.; Pietrusiewicz, K. M.; Sieron,
L.; Wieczorek, W.; Jerphagnon, T.; Arends, I. W. C. E.; Hanefeld, U.;
Minnaard, A. J. Synthesis 2009, 2061.
(12) Selected methods for the reduction of tertiary phosphine oxides:
(a) Naumann, K.; Zon, G.; Mislow, K. J. Am. Chem. Soc. 1969, 91, 7012.
(b) Marsi, K. L. J. Org. Chem. 1974, 39, 265. (c) Coumbe, T.; Lawrence,
N. J.; Muhammad, F. Tetrahedron Lett. 1994, 35, 625. (d) Imamoto, T.;
Kikuchi, S.-i.; Miura, T.; Wada, Y. Org. Lett. 2000, 3, 87. (e) Busacca, C. A.;
Raju, R.; Grinberg, N.; Haddad, N.; James-Jones, P.; Lee, H.; Lorenz, J. C.;
Saha, A.; Senanayake, C. H. J. Org. Chem. 2008, 73, 1524. See also ref 11b.
(13) Brunel, J. M.; Faure, B.; Maffei, M. Coord. Chem. Rev. 1998,
178-180, 665.
(14) (a) Emmick, T. L.; Letsinger, R. L. J. Am. Chem. Soc. 1968, 90,
3459. (b) Hays, H. R. J. Org. Chem. 1968, 33, 3690. (c) Neumaier, H.
Preparation of Secondary Phosphine Oxides via Grignard Reaction of
Phosphinic Acid Esters. D.E. Patent 88-3824776, 1990. (d) Leyris, A.;
Bigeault, J.; Nuel, D.; Giordano, L.; Buono, G. Tetrahedron Lett. 2007,
48, 5247. (e) Xu, Q.; Zhao, C.-Q.; Han, L.-B. J. Am. Chem. Soc. 2008, 130,
12648.
(15) Epstein, M.; Buckler, S. A. Tetrahedron 1962, 18, 1231.
(16) For the addition of phosphine to aldehydes and ketones, see: (a)
Buckler, S. A. J. Am. Chem. Soc. 1960, 82, 4215. (b) Buckler, S. A.;
Epstein, M. J. Am. Chem. Soc. 1960, 82, 2076.
(17) For the Lewis acid-mediated addition of secondary phosphines
to aldehydes, see: Suzuki, K.; Hashimoto, T.; Maeta, H.; Matsumoto,
T. Synlett 1992, 125.
r
2010 American Chemical Society
Published on Web 08/31/2010
pubs.acs.org/Organometallics