Organic Letters
Letter
Dai, H. X.; Yu, J. Q. Cu(II)-Mediated C−H Amidation and Amination
of Arenes: Exceptional Compatibility with Heterocycles. J. Am. Chem.
Soc. 2014, 136, 3354−3357. (c) Shang, M.; Wang, M. M.; Saint-Denis,
T. G.; Li, M. H.; Dai, H. X.; Yu, J. Q. Copper-Mediated Late-Stage
Functionalization of Heterocycle-Containing Molecules. Angew. Chem.,
Int. Ed. 2017, 56, 5317−5321. (d) Allen, L. J.; Cabrera, P. J.; Lee, M.;
Sanford, M. S. N-Acyloxyphthalimides as Nitrogen Radical Precursors
in the Visible Light Photocatalyzed Room Temperature C−H
Amination of Arenes and Heteroarenes. J. Am. Chem. Soc. 2014, 136,
5607−5610. (e) Kawamata, C.; Li, Y.; Nakamura, H.; Vantourout, J. C.;
Liu, Z.; Hou, Q.; Bao, D.; Starr, J. T.; Chen, J.; Yan, M.; Baran, P. S.
Electrochemically Enabled, Nickel-Catalyzed Amination. Angew.
Chem., Int. Ed. 2017, 56, 13088−13093. (f) Hendrick, C. E.; Bitting,
K. J.; Cho, S.; Wang, Q. Site-Selective Copper-Catalyzed Amination
and Azidation of Arenes and Heteroarenes via Deprotonative
Zincation. J. Am. Chem. Soc. 2017, 139, 11622−11628. (g) Pang, J.
H.; Kaga, A.; Chiba, S. Nucleophilic amination of methoxypyridines by
a sodium hydride−iodide composite. Chem. Commun. 2018, 54,
10324−10327. (h) Abou-Shehada, S.; Teasdale, M. C.; Bull, S. D.;
Wade, C. E.; Williams, J. M. Lewis Acid Activation of Pyridines for
Nucleophilic Aromatic Substitution and Conjugate Addition. Chem-
SusChem 2015, 8, 1083−1087.
(6) (a) Ruiz-Castillo, P.; Buchwald, S. L. Applications of Palladium-
Catalyzed C−N Cross-Coupling Reactions. Chem. Rev. 2016, 116,
12564−12649. (b) Palucki, M.; Wolfe, J. P.; Buchwald, S. L. Synthesis
of Oxygen Heterocycles via a Palladium-Catalyzed C−O Bond-
Forming Reaction. J. Am. Chem. Soc. 1996, 118, 10333−10334.
(c) Torraca, K. E.; Kuwabe, S. I.; Buchwald, S. L. A High-Yield, General
Method for the Catalytic Formation of Oxygen Heterocycles. J. Am.
Chem. Soc. 2000, 122, 12907−12908. (d) Driver, M. S.; Hartwig, J. F. A
Second-Generation Catalyst for Aryl Halide Amination: Mixed
Secondary Amines from Aryl Halides and Primary Amines Catalyzed
by (DPPF)PdCl2. J. Am. Chem. Soc. 1996, 118, 7217−7218. (e) Shen,
Q.; Ogata, T.; Hartwig, J. F. Highly Reactive, General and Long-Lived
Catalysts for Palladium-Catalyzed Amination of Heteroaryl and Aryl
Chlorides, Bromides, and Iodides: Scope and Structure−Activity
Relationships. J. Am. Chem. Soc. 2008, 130, 6586−6596.
45 and 48 could efficiently inhibit the growth of a range of
cancer cell lines. The preliminary mechanistic studies implied
that 45 and 48 are different from crizotinib as anticancer
compounds. Further detailed mechanistic studies are ongoing in
our laboratory.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Details on the reaction conditions optimization, general
procedure of amination, NMR data, characterization, cell
experiments, and Western blot assay (PDF)
AUTHOR INFORMATION
Corresponding Authors
■
ORCID
Author Contributions
∥These authors contributed equally to this work.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Xueqiang Wang greatly thanks Hunan University for the startup
funding to support this work. This work is also financially
supported by National Institutes of Health (GM R35 127130
and NSF 1645215) and National Natural Science Foundation of
China (NSFC grants 21505032, 21325520, and 1327009).
(7) (a) Ullmann, F. Ueber eine neue Bildungsweise von
Diphenylaminderivaten. Ber. Dtsch. Chem. Ges. 1903, 36, 2382−2384.
(b) Goldberg, I. Ueber Phenylirungen bei Gegenwart von Kupfer als
Katalysator. Ber. Dtsch. Chem. Ges. 1906, 39, 1691−1692. (c) Zhou, W.;
Fan, M.; Yin, J.; Jiang, Y.; Ma, D. CuI/Oxalic Diamide Catalyzed
Coupling Reaction of (Hetero)Aryl Chlorides and Amines. J. Am.
Chem. Soc. 2015, 137, 11942−11945. (d) Ziegler, D. T.; Choi, J.;
REFERENCES
■
(1) Vitaku, E.; Smith, D. T.; Njardarson, J. T. Analysis of the Structural
Diversity, Substitution Patterns, and Frequency of Nitrogen Hetero-
cycles among U.S. FDA Approved Pharmaceuticals. J. Med. Chem.
2014, 57, 10257−10274.
Munoz-Molina, J. M.; Bissember, A. C.; Peters, J. C.; Fu, G. C. A
̃
Versatile Approach to Ullmann C−N Couplings at Room Temper-
ature: New Families of Nucleophiles and Electrophiles for Photo-
induced, Copper-Catalyzed Processes. J. Am. Chem. Soc. 2013, 135,
13107−13112.
(2) Moasser, M. M.; Basso, A.; Averbuch, S. D.; Rosen, N. The
Tyrosine Kinase Inhibitor ZD1839 (“Iressa”) Inhibits HER2-driven
Signaling and Suppresses the Growth of HER2-overexpressing Tumor
Cells. Cancer Res. 2001, 61, 7184−7188.
(8) (a) Chan, D.; Monaco, K.; Wang, R.; Winters, M. New N- and O-
arylations with phenylboronic acids and cupric acetate. Tetrahedron
Lett. 1998, 39, 2933−2936. (b) Lam, P. Y. S.; Clark, C. G.; Saubern, S.;
Adams, J.; Winters, M. P.; Chan, D. M. T.; Combs, A. New aryl/
heteroaryl C-N bond cross-coupling reactions via arylboronic acid/
cupric acetate arylation. Tetrahedron Lett. 1998, 39, 2941−2944.
(c) Evans, D. A.; Katz, J. L.; West, T. R. Synthesis of diaryl ethers
through the copper-promoted arylation of phenols with arylboronic
acids. An expedient synthesis of thyroxine. Tetrahedron Lett. 1998, 39,
2937−2940.
(3) Rabindran, S. K.; Discafani, C. M.; Rosfjord, E. C.; Baxter, M.;
Floyd, M. B.; Golas, J.; Hallett, W. A.; Johnson, B. D.; Nilakantan, R.;
Overbeek, E.; Reich, M.; Shen, R.; Shi, X.; Tsou, H. R.; Wang, H. F.;
Wissner, A. Antitumor Activity of HKI-272, an Orally Active,
Irreversible Inhibitor of the HER-2 Tyrosine Kinase. Cancer Res.
2004, 64, 3958−3965.
(4) (a) Murakami, K.; Yamada, S.; Kaneda, T.; Itami, K. C−H
Functionalization of Azines. Chem. Rev. 2017, 117, 9302−9332.
(b) Fier, P. S. A Bifunctional Reagent Designed for the Mild,
Nucleophilic Functionalization of Pyridines. J. Am. Chem. Soc. 2017,
139, 9499−9502. (c) Cernak, T.; Dykstra, K. D.; Tyagarajan, S.;
Vachalb, P.; Krskab, S. W. The medicinal chemist’s toolbox for late
stage functionalization of drug-like molecules. Chem. Soc. Rev. 2016, 45,
546−576. (d) Fier, P. S.; Hartwig, J. F. Synthesis and Late-Stage
Functionalization of Complex Molecules through C−H Fluorination
and Nucleophilic Aromatic Substitution. J. Am. Chem. Soc. 2014, 136,
10139−10147.
̈
̈
(9) Bostrom, J.; Brown, D. G.; Young, R. J.; Keseru, G. M. Expanding
the medicinal chemistry synthetic toolbox. Nat. Rev. Drug Discovery
2018, 17, 709−727.
(10) For relevant reviews: (a) Rosen, B. M.; Quasdorf, K. W.; Wilson,
D. A.; Zhang, N.; Resmerita, A.; Garg, N. K.; Percec, V. Nickel-
Catalyzed Cross-Couplings Involving Carbon−Oxygen Bonds. Chem.
Rev. 2011, 111, 1346−1416. (b) Cornella, J.; Zarate, C.; Martin, R.
Metal-catalyzed activation of ethers via C−O bond cleavage: a new
strategy for molecular diversity. Chem. Soc. Rev. 2014, 43, 8081−8097.
(c) Li, B.; Yu, D.; Sun, C.; Shi, Z. Activation of “Inert” Alkenyl/Aryl C-
(5) (a) Hilton, M. C.; Dolewski, R. D.; McNally, A. Selective
Functionalization of Pyridines via Heterocyclic Phosphonium Salts. J.
Am. Chem. Soc. 2016, 138, 13806−13809. (b) Shang, M.; Sun, S. Z.;
D
Org. Lett. XXXX, XXX, XXX−XXX