102
P.R. Olivato et al. / Journal of Molecular Structure 981 (2010) 93–102
C.R. Cerqueira Jr. The LCCA-Laboratory of Advanced Scientific
4. Conclusions
Computation of the University of São Paulo is acknowledged for
access to resources. M.D.C. thanks the University of Ferrara (Nano
& Nano Project) for financial support. Professor G. Distefano’s
assistance during the execution of this work is also gratefully
acknowledged.
The preferred conformations of some 2-ethylsulfinyl-(40-substi-
tuted)-phenylthioacetates bearing as substituents NO2 1, Cl 2, Br 3,
H 4, Me 5, OMe 6 were determined by vCO IR analysis, B3LYP/6-
31G(d,p) calculations along with the NBO analysis for 1, 4 and 6
and X-ray analysis for 3. Theoretical data indicated the existence of
four gauche conformers, i.e. the q-g-syn, g3-syn, g1-anti and q-g2-syn
conformers for 1, 4 and 6 derivatives. The q-g-syn and g3-syn con-
formers present almost the same computed vCO frequencies while
Appendix A. Supplementary material
Supplementary data associated with this article can be found, in
the g1-anti conformer presents the lowest
v
CO frequency. The q-g2-
syn conformer shows the highest computed
v
CO frequency. The cal-
culations reproduce quite well the experimental results. In fact the
q-g-syn and g3-syn conformers correspond in the IR spectrum (in
solution) to the vCO doublet higher frequency component of larger
intensity while the g1-anti conformer correspond to the vCO doublet
lower frequency component of smaller intensity.
References
[1] P.R. Olivato, M.G. Mondino, Phosphorus, Sulfur, Silicon Relat. Elem 59 (1991)
219.
[2] E. Bueno, M.S. Thesis. Universidade de São Paulo, 1996.
[3] P.R. Olivato, E. Bueno, S.A. Guerrero, J. Zukerman-Schpector, in: 18th
International Symposium on the Organic Chemistry of Sulfur, Florence, Italy,
Book of Abstracts, 1998, p. 214.
[4] D.N.S. Rodrigues, P.R. Olivato, R. Rittner, M. Dal Colle, in: 24th International
Symposium on the Organic Chemistry of Sulfur, Florence, Italy, Book of
Abstracts, 2010, p. 103.
[5] G. Distefano, M. Dal Colle, M. de Palo, D. Jones, G. Bombieri, A. Del Pra, P.R.
Olivato, M. Mondino, J. Chem. Soc. Perkin Trans. 2 (8) (1996) 1661.
[6] P.R. Olivato, M.G. Mondino, M.H. Yreijo, B. Wladislaw, L. Marzorati, M.B.
Bjorklund, G. Distefano, M. Dal Colle, G. Bombieri, A. Del Pra, J. Chem. Soc.
Perkin Trans. 2 (1) (1998) 109.
[7] P.R. Olivato, A.K.C.A. Reis, R. Ruiz Filho, M. Dal Colle, G. Distefano, J. Mol. Struct.
(Theochem) 577 (2002) 177.
[8] P.R. Olivato, E. Vinhato, A. Rodrigues, J. Zukerman-Schpector, R. Rittner, M. Dal
Colle, J. Mol. Struct. 827 (2007) 25.
[9] P.R. Olivato, N.L.C. Domingues, M.G. Mondino, F.S. Lima, J. Zukerman-
Schpector, R. Rittner, M. Dal Colle, J. Mol. Struct. 892 (2008) 360.
[10] D. Jones, A. Modelli, P.R. Olivato, M. Dal Colle, M. de Palo, G. Distefano, J. Chem.
Soc. Perkin Trans. 2 (7) (1994) 1651.
[11] Part of the present paper has already been presented by P.R. Olivato, M.L.T.
Hui, A. Rodrigues, N.L.C. Domingues, C.R. Cerqueira Jr., R. Rittner, M. Dal Colle
at the 23rd International Symposium on the Organic Chemistry of Sulfur,
Moscow, Russia, Book of Abstracts, 2008, p. 121.
The NBO analysis showed that the q-g-syn, g3-syn, g1-anti and q-
g2-syn conformers for 1, 4 and 6 are strongly stabilized by
LPS3
?
pCꢀ
(conjugative), LPO2
?
rCꢀ
and LPO2 ?
rCꢀ
1@O2
1—S3
1—C4
(through bond coupling) interactions whose mean energy values
are of ca. 31 kcal molꢂ1, 35 kcal molꢂ1 and 18 kcal molꢂ1, respec-
tively. The LPS3
?
pꢀ
and LPO2
?
rꢀ
orbital interactions sta-
C1—O2
C1—C4
bilize all the conformers into the same extent while the (q-g, g3
and q-g2)-syn conformers are more stabilized than the g1-anti con-
former by ca. 5 kcal molꢂ1 through the LPO2
?
rCꢀ
orbital interac-
1—S3
tion. The stronger LPO2
?
rCꢀ
interaction for the (q-g, g3 and q-g2)-
1—S3
syn conformers relative to that of the g1-anti conformer originates an
increaseof thecarbonylbond order andthus in the
the former conformers relative to the latter one.
vCO frequenciesof
The q-g-syn, g3-syn and q-g2-syn conformers are further stabi-
lized by rC
?
pCꢀ
/
(strong), pC1@O2/ ?
rꢀC , LPO2 rꢀC
4—S5
4—S5
6—H17½Etꢁ
(weak) and pꢀC
rꢀC1—O2 (strong) orbital interactions. The g1-anti
1@O2
4—S5
conformer is stabilized by rC
?
pCꢀ
(strong), ? pC1@O2
(weak),
rCꢀ
/ (strong) orbital
1@O2 4—S5
/
4—S5
1@O2
[12] M.L.T. Hui, PhD Thesis, Universidade de São Paulo, 2007.
[13] Galactic Industries Corporation, 1991–1998.
[14] A. Altomare, M.C. Burla, M. Camalli, G.L. Cascarano, C. Giacovazzo, A.
Guagliardi, A.G.G. Moliterni, G. Polidori, R. Spagna, J. Appl. Crystallogr. 32
(1999) 115.
rCꢀ
LPO8[SO])
,
LPO2[CO]
?
?
rCꢀ
,
pC9@C11[Ph] ?
rCꢀ
4—S5
6—H17½Etꢁ
4—H16
½a-CH2ꢁ
rCꢀ
(medium) and pꢀC
11—H23½o-Phꢁ
interactions.
The mean summing up values of all selected orbital interaction
energies of the q-g-syn, g3-syn, g1-anti and q-g2-syn conformers for
1, 4 and 6 indicate that the g3-syn conformer is the most stable, fol-
lowed by g1-anti and q-g2-syn conformers, being the q-g-syn con-
former the slightly less stable. However, the q-g-syn conformer is
further stabilized through the Odꢂ(2)[CO]ꢃ ꢃ ꢃSd+(5)[SO] attractive Cou-
lombic interaction while the q-g2-syn conformer is destabilized by
the LPS5ꢃ ꢃ ꢃOdꢂ(2)[CO] repulsive Coulombic interaction. This analysis
is in line with the computed relative conformer population which
indicates the following order: q-g-syn, g3-syn > g1-anti ꢄ q-g2-syn.
X-ray single crystal analysis, performed for 3 shows that this
compound assumes a geometry reasonably close to the less stable
q-g2-syn conformation in the gas phase for 1, 4 and 6.
In the solid, 3 presents similar S5ꢃ ꢃ ꢃC1, O2ꢃ ꢃ ꢃS5, C1ꢃ ꢃ ꢃO8, C9ꢃ ꢃ ꢃO2
intramolecular short contacts found in the gas phase for 1, 4 and
6. These contacts stabilize the distorted q-g2-syn conformer of 3
through the same orbital and Coulombic interactions which take
place for the q-g2-syn conformer in the gas phase for 1, 4 and 6.
The energy gain for the crystal packing of 3 is obtained through di-
pole moment coupling along with a series of CAHꢃ ꢃ ꢃO interactions.
[15] G.M. Sheldrick, Acta Crystallogr. A64 (2008) 112.
[16] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A.
Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox,
H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E.
Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y.
Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S.
Dapprich, A. D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K.
Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J.
Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L.
Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M.
Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A.
Pople, Gaussion 03, Revision E.01, Wallingford CT, 2004.
[17] (a) A.D. Becke, Phys. Rev. A 38 (1988) 3098;
(b) C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785;
(c) A.D. Becke, J. Chem. Phys. 98 (1993) 5648;
(d) P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys. Chem. 98
(1994) 11623.
[18] W.J. Hehre, L. Radom, P.v.R. Schleyer, J.A. Pople, Ab Initio Molecular Orbital
Theory, Wiley, New York, 1986.
[19] E.D. Glendening, A.E. Reed, J.E. Carpenter, F. Weinhold, NBO version 3.1
(Implemented in the Gaussian 03 package of programs).
[20] J.A. Riddick, W.B. Bunger (Eds.), Techniques of Organic Chemistry, third ed.,
Organic Solvents, vol. II, Wiley, New York, 1970.
[21] N.B. Colthup, L.H. Daly, S.E. Wiberley, Introduction to Infrared and Raman
Spectroscopy, Academic Press, New York, 1975.
[22] L.J. Bellamy, Advances in Infrared Group Frequencies, Chapman and Hall,
London, 1975.
Acknowledgments
[23] A. Gaset, A. Lafaille, A. Verdier, A. Lattes, Bull. Soc. Chim. France (1968) 4108.
[24] Occupancies for donor and acceptor orbitals for the q-g-syn, g3-syn, g1-anti and
q-g2-syn conformers of the 2-ethylsulfinyl-(40-substituted)-phenylthioacetates
1, 4 and 6 are presented in Table S1 (Supplementary information).
[25] P.R. Olivato, N.L.C. Domingues, M.G. Mondino, C.F. Tormena, R. Rittner, M. Dal
Colle, J. Mol. Struct. 920 (2009) 393.
The Brazilian authors thank the Fundação de Amparo à Pesqu-
isa do Estado de São Paulo (FAPESP) for financial support of this
research and for a fellowship to A.R., the Conselho Nacional de
Desenvolvimento Científico e Tecnológico (CNPq) for fellowships
to P.R.O., J.Z.-S. and R.R. and for scholarships to M.L.T. Hui and