4994
Z. Ye et al. / Tetrahedron Letters 51 (2010) 4991–4994
8. Balalaie, S.; Bararjanian, M.; Sheikh-Ahmadi, M.; Hekmat, S.; Salehi, P. Synth.
Commun. 2007, 1097.
9. Lee, J. H.; Choi, B. S.; Chang, J.; Kim, S. S.; Shin, H. Org. Process Res. Dev. 2007, 11,
1062.
aryl aldehydes with electron-withdrawing groups or electron-
donating ones were used as substrates. As shown in Table 3, under
optimized reaction conditions, the target compounds were ob-
tained in high yields. Notably, the electron-donating group and
the electron-withdrawing group on the aryl ring had some impact
on the reaction rates. Aryl aldehydes with electron-withdrawing
groups took less time to complete the reactions. In conclusion,
we introduced multihalogen-containing pyridine ring into a series
of polyfunctionalized 4H-pyran derivatives under mild conditions.
The reaction was completed in high yield via piperidine-catalyzed
one-pot three components reaction of aryl aldehyde, malononitrile,
and 3-(2,6-dichloro-5-fluoropyridin-3-yl)-3-oxopropanoate. Our
presented process represents the feasibility and diversity of incor-
porating various moieties with potential bioactivity into polyfunc-
tionalized 4H-pyran derivatives, which would be a significant
practice for the further synthesis of biologically active molecules.
10. Baker, W. R.; Cai, S.; Dimitroff, M.; Fang, L.; Huh, K. K.; Ryckman, D. R.; Shang,
X.; Shawar, R. M.; Therrien, J. H. J. Med. Chem. 2004, 47, 4693.
11. Zheng, H.; Liu, Y.; Xu, Z. Agrochemicals 2008, 47, 34.
12. Zheng, H.; Liu, Y.; Zhao, Q.; Xu, Z. Chin. J. Appl. Chem. 2010, 27, 164.
13. Corey, E. J. Angew. Chem., Int. Ed. Engl. 1991, 30, 455.
14. Wang, Q.; Song, X.; Yan, C. Prog. Chem. 2009, 21, 997.
15. Wang, X.; Shi, D.; Wei, X.; Zong, Z. Chin. J. Org. Chem. 2004, 24, 1454.
16. Jin, T.; Wang, A.; Wang, X.; Zhang, J.; Li, T. Synlett 2004, 871.
17. Kumar, D.; Reddy, V. B.; Mishra, B. G.; Rana, R. K.; Nadagouda, M. N.; Varma, R.
S. Tetrahedron 2007, 63, 3093.
18. Ballini, R.; Bosica, G.; Conforti, M. L.; Maggi, R.; Mazzacani, A.; Righi, P.; Sartori,
G. Tetrahedron 2001, 57, 1395.
19. Kidwai, M.; Saxena, S.; Khan, M. K. R.; Thukral, S. S. Bioorg. Med. Chem. Lett.
2005, 15, 4295.
20. Shestopalov, A. M.; Niazimbetova, Z. I.; Evans, D. H.; Niyazymbetov, M. E.
Heterocycles 1999, 51, 1101.
21. Marco, J. L.; de los Ríos, C.; García, A. G.; Villarroya, M.; Carreiras, M. C.;
Martins, C.; Eleutério, A.; Morreale, A.; Orozco, M.; Luque, F. J. Bioorg. Med.
Chem. 2004, 12, 2199.
Acknowledgments
22. Heber, D.; Stoyanov, E. V. Synthesis 2003, 227.
23. Shestopalov, A. A.; Rodinovskaya, L. A.; Shestopalov, A. M.; Litvinov, V. P. Russ.
Chem. Bull. 2004, 53, 2342.
24. Peng, Y.; Song, G. Catal. Commun. 2007, 8, 111.
This work was financial supported by National Basic Research
Program of China (973 Program, 2010CB126106), National High
Technology Research and Development Program of China (863 Pro-
gram, 2010AA10A204), National Science Foundation China Pro-
gram Grant (20872034) and Program for New Century Excellent
Talents in University (NCET070284). This work was also partly sup-
ported by Shanghai Foundation of Science and Technology
(073919107, 09XD1401300, 09391911800). We thank Dr. Yucheng
Gu of Syngenta at Jealott’s Hill International Research Centre in the
UK for proofreading of the manuscript.
25. Zhou, J.; Tu, S.; Gao, Y.; Ji, M. Chin. J. Org. Chem. 2001, 21, 742.
26. El-Rahman, N. M. A.; El-Kateb, A. A.; Mady, M. F. Synth. Commun. 2007, 3961.
27. Elinson, M. N.; Dorofeev, A. S.; Feducovich, S. K.; Gorbunov, S. V.; Nasybullin, R.
F.; Miloserdov, F. M.; Nikishin, G. I. Eur. J. Org. Chem. 2006, 4335.
28. Jayashree, P.; Shanthi, G.; Perumal, P. T. Synlett 2009, 917.
29. Experimental: All melting points (mp) were obtained with a Büchi Melting
Point B540 and are uncorrected. 1H and 13C NMR spectra were recorded on a
Brucker AM-400 (400 MHz) spectrometer with CDCl3 as the solvent and TMS as
the internal standard. Chemical shifts are reported in d (parts per million)
values. Coupling constants nJ are reported in Hz. High-resolution electron mass
spectra were recorded under electron impact (70 eV) condition using
a
MicroMass GCT CA 055 instrument. Analytical thin-layer chromatography
(TLC) was carried out on precoated plates (Silica Gel 60 F254), and spots were
visualized with ultraviolet (UV) light. All chemicals or reagents were purchased
from standard commercial supplies.
Supplementary data
30. General procedure for one-pot syntheses of 6a–n: To a solution of the appropriate
aldehyde (1.2 mmol) in ethanol (15 mL), malononitrile (1.2 mmol) and
piperidine (0.12 mmol) were added. The mixture was stirred for 0.5–1.5 h at
35 °C. After Knoevenagel condensation was finished, (monitored by TLC), 3-
(2,6-dichloro-5-fluoropyridin-3-yl)-3-oxopropanoate was added into the
reaction mixture, and warmed to reflux for 1–2 min. The solvent was
removed under reduced pressure. Then, the rude product was precipitated
by adding 5 mL mixture solvent (PE/EA = 3:1). After filtration and drying, the
pure compound was obtained.
Supplementary data associated with this article can be found, in
References and notes
1. Hatakeyama, S.; Ochi, N.; Numata, H.; Takano, S. J. Chem. Soc., Chem. Commun.
1988, 17, 1202.
2. González, R.; Martín, N.; Seoane, C.; Marco, J. L.; Albert, A.; Cano, F. H.
Tetrahedron Lett. 1992, 33, 3809.
3. Wang, J.; Liu, D.; Zhang, Z.; Shan, S.; Han, X.; Srinivasula, S. M.; Croce, C. M.;
Alnemri, E. S.; Huang, Z. W. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 7124.
4. Zamocka, J.; Misikova, E.; Durinda Pharmazie 1991, 46, 610.
5. Babu, N. S.; Pasha, N.; Rao, K. T. V.; Prasad, P. S. S.; Lingaiah, N. Tetrahedron Lett.
2008, 49, 2730.
6. Kemnitzer, W.; Drewe, J.; Jiang, S.; Zhang, H.; Crogan-Grundy, C.; Labreque, D.;
Bubenick, M.; Attardo, G.; Denis, R.; Lamothe, S.; Gourdeau, H.; Tseng, B.;
Kasibhatla, S.; Cai, S. J. Med. Chem. 2008, 51, 417.
31. Typical data for
a
representative compound. Ethyl 6-amino-5-cyano-2-(2,6-
(6i): This
dichloro-5-fluoropyridin-3-yl)-4-p-tolyl-4H-pyran-3-carboxylate
compound was obtained as white solid following the above method, yield 83%,
mp 183.8–185.2 °C; 1H NMR (400 MHz, CDCl3): d 7.55 (1H, d, J = 7.2 Hz, Py-H),
7.21 (2H, d, J = 8.0 Hz, Ph-H), 7.15 (2H, d, J = 8.0 Hz, Ph-H), 4.74 (2H, s, NH2), 4.57
(1H, s, CH-Ph), 3.85–3.98 (2H, m, CH2CH3), 2.33 (3H, s, Ph-Me), 0.95 (3H, t,
J = 7.2 Hz, CH2CH3). 13C NMR (100 MHz, CDCl3): d 163.75, 159.88, 157.75, 154.92,
152.31, 149.12, 139.55, 138.66, 137.43, 130.932, 130.36, 129.55, 127.61, 118.34,
62.19, 61.37, 38.75, 21.01, 13.55. HRMS (EI+): calcd for C21H16N3O3F35Cl2 (M+),
447.0553; found, 447.0553; calcd for C21H16N3O3F35Cl37Cl (M+), 449.0523;
found, 449.0540; calcd for C21H16N3O3F37Cl2 (M+), 451.0494; found, 451.0518.
7. Kemnitzer, W.; Drewe, J.; Jiang, S.; Zhang, H.; Zhao, J.; Crogan-Grundy, C.; Xu,
L.; Lamothe, S.; Gourdeau, H.; Denis, R.; Tseng, B.; Kasibhatla, S.; Cai, S. J. Med.
Chem. 2007, 50, 2858.