O. Saavedra et al. / Bioorg. Med. Chem. Lett. 19 (2009) 6836–6839
6839
Table 6
Siegmund, A.; Xi, N.; Kaplan-Lefko, P.; Rex, K.; Chen, A.; Lin, J.; Moriguchi, J.;
Berry, L.; Huang, L.; Teffera, Y.; Yang, Y.; Zhang, Y.; Bellon, S. F.; Lee, M.;
Shimanovich, R.; Bak, A.; Dominguez, C.; Norman, M. H.; Harmange, J.-C.;
Dussault, I.; Kim, T.-S. J. Med. Chem. 2008, 51, 3688; (j) Kim, K. S.; Zhang, L.;
Schmidt, R.; Cai, Z.-W.; Wei, D.; Williams, D. K.; Lombardo, L. J.; Trainor, G. L.;
Xie, D.; Zhang, Y.; An, Y.; Sack, J. S.; Tokarski, J. S.; Darienzo, C.; Kamath, A.;
Marathe, P.; Zhang, Y.; Lippy, J.; Jeyaseelan, R., Sr.; Wautlet, B.; Henley, B.;
Gullo-Brown, J.; Manne, V.; Hunt, J. T.; Fargnoli, J.; Borzilleri, R. M. J. Med. Chem.
2008, 51, 5330; (k) D’Angelo, N. D.; Bellon, S. F.; Booker, S. K.; Cheng, Y.; Coxon,
A.; Dominguez, C.; Fellows, I.; Hoffman, D.; Hungate, R.; Kaplan-Lefko, P.; Lee,
M. R.; Li, C.; Liu, L.; Rainbeau, E.; Reider, P. J.; Rex, K.; Siegmund, A.; Sun, Y.;
Tasker, A. S.; Xi, N.; Xu, S.; Yang, Y.; Zhang, Y.; Burgess, T. L.; Dussault, I.; Kim,
T.-S. J. Med. Chem. 2008, 51, 5766; (l) Toschi, L.; Jänne, P. A. Clin. Cancer Res.
2008, 14, 5941.
Effect of compound 21 on VEGFR2 cellular endpoints
Compd
ERK phosphorylation
IC50 (nM)
HUVEC proliferation
IC50 (nM)
Tubule length
IC50 (nM)
21
1
0.3
<3
Table 7
The effect of oral dosage of 21 on various human tumor models in vivo at a dosage of
40 mg/kg once daily
8. (a) Claridge, S.; Raeppel, F.; Granger, M.-C.; Bernstein, N.; Saavedra, O.; Zhan, L.;
Llewellyn, D.; Wahhab, A.; Deziel, R.; Rahil, J.; Beaulieu, N.; Nguyen, H.; Dupont,
I.; Barsalou, A.; Beaulieu, C.; Chute, I.; Gravel, S.; Robert, M.-F.; Lefebvre, S.;
Dubay, M.; Pascal, R.; Gillespie, J.; Jin, Z.; Wang, J.; Besterman, J.; Macleod, A. R.;
Vaisburg, A. Bioorg. Med. Chem. Lett. 2008, 18, 2793; (b) Saavedra, O.; Claridge,
S.; Zhan, L.; Raeppel, F.; Vaisburg, A.; Raeppel, S.; Deziel, R.; Mannion, M.; Zhou,
N.; Gaudette, F.; Isakovic, L.; Wahhab, A.; Granger, M.-C.; Bernstein, N. WO
2007/0004675 A1.
Tumor model
Experiment duration
(days)
% Tumor growth
inhibition
A549 (lung)
U87MG (glioblastoma)
MKN45 (gastric)
14
10
12
54
70
101
9. Raeppel, S.; Claridge, S.; Saavedra, O.; Gaudette, F.; Zhan, L.; Mannion, M.; Zhou,
N.; Raeppel, F.; Granger, M.-C.; Isakovic, L.; Déziel, R.; Nguyen, H.; Beaulieu, N.;
Beaulieu, C.; Dupont, I.; Robert, M.-F.; Lefebvre, S.; Dubay, M.; Rahil, J.; Wang, J.;
Ste-Croix, H.; Macleod, A. R.; Besterman, J.; Vaisburg, A. Bioorg. Med. Chem. Lett.
2009, 19, 1323.
kinases.12 Compound 21 showed good efficacy in vivo when eval-
uated in several human tumor xenograft models, with daily oral
administration of 40 mg/kg (Table 7).
In conclusion, novel dual c-Met/VEGF receptor tyrosine kinase
inhibitors based upon the thieno[3,2-b]pyridine scaffold were
designed and synthesized. These compounds exhibit potent activi-
ties against target enzymes and in cell-based assays. Lead molecules
possess favorable pharmacokinetic profiles and demonstrate signif-
icantoralanti-tumoractivityinvivo. ThisworkwaspartoftheMeth-
ylGene kinase inhibitor research program, which led to the
identification of the clinical candidate, MGCD265, currently in Phase
II clinical development.
10. (a) Fujiwara, A.; Senga, T.; Nishitoba, T.; Osawa, T.; Miwa, A.; Nakamura, K. PCT
Int. Patent Appl. WO 2003/000660; (b) Fujiwara, A.; Senga, T.; Nishitoba, T.;
Osawa, T.; Miwa, A.; Nakamura, K. U.S. Patent 2004/0242603.
11. Bannen, L. C.; Chan, D. S.; Chen, J.; Dalrymple, L. E.; Forsyth, T. P.; Huynh, T. P.;
Jammalamadaka, V.; Khoury, R. G.; Leahy, J. W.; Mac, M. B.; Mann, G.; Mann, L.
W.; Nuss, J. M.; Parks, J. J.; Takeuchi, C. S.; Wang, Y.; Xu, W. PCT Int. Patent Appl.
WO 2005/030140.
12. Compound 21 at a concentration of 100 nM inhibited the following enzymes:
Flt-3 (100%), Tie-2 (100%), PDGFR
a (99%), c-Kit (99%), VEGFR1 (98%), VEGFR3
(97%), Aurora A (96%), EphB4 (95%), c-SRC (93%). Compound 21 had <5%
inhibitory activity against the following enzymes CDK2/Cyclin E, EGFR, GSK3b,
IKKb, PKBa
. Compound 21 was evaluated using the KinaseprofilerTM Kinase
Selectivity Screening Service (radiometric protein kinase assays) by Millipore.
13. In vitro kinase assays (c-Met and VEGFR-2): Preparation of GST fusion proteins:
recombinant baculovirus containing the catalytic domain of c-Met and of the
VEGFR-2 receptor fused to glutathione S-transferase (GST) fusion genes were
used to infect High five (c-Met) or Sf9 (VEGFR-2) cells at a multiplicity of
infection of 1 or 0.1, respectively. Cell lysates were prepared after ꢀ72 h of
References and notes
1. (a) Cohen, P. Nat. Rev. Drug Disc. 2002, 1, 243; (b) Blume-Jensen, P.; Hunter, T.
Nature 2001, 355.
2. Sartore-Bianchi, A.; Ricotta, R.; Cerea, G.; Maugeri, M. R.; Siena, S. Int. J. Biol.
Markers 2007, 22, S77.
infection in 1% Triton X-100, 2 lg of leupeptin/mL, and 2 lg of aprotinin/mL
after ꢀ72 h of infection in phosphate-buffered saline, and the fusion proteins
were purified over glutathione agarose (Sigma) according to manufacturer’s
instructions. Biochemical kinase assays for IC50 determination and kinetic
studies: Inhibition of c-Met and VEGFR2 was measured in a DELFIATM assay
(Perkin–Elmer). The substrate poly(Glu4,Tyr) was immobilized onto black
high-binding polystyrene 96-well plates (Nunc Maxisorp). The c-Met kinase
reaction was conducted in 25 mM Hepes pH 7.5 containing 20 mM NaCl,
10 mM MgCl2, 5 mM b-mercaptoethanol, 0.1 mg/mL bovine serum albumin
3. (a) Arora, A.; Scholar, E. M. J. Pharmacol. Exp. Ther. 2005, 315, 971; (b) Garcia-
Echeverria, C.; Fabbro, D. Mini-Rev. Med. Chem. 2004, 4, 273.
4. Chouhan, J. D.; Zamarripa, D. E.; Lai, P. H.; Oramasionwu, C. U.; Grabinski, J. L. J.
Oncol. Pharm. Pract. 2007, 13, 5.
5. Wilhelm, S.; Carter, C.; Lynch, M.; Lowinger, T.; Dumas, J.; Smith, R. A.;
Schwartz, B.; Simantov, R.; Kelley, S. Nat. Rev. Drug Disc. 2006, 5, 835.
6. (a) Ferrara, N.; Gerber, H. P.; LeCouter, J. Nat. Med. 2003, 9, 669; (b) Dumas, J.;
Dixon, J. A. Expert Opin. Ther. Patents 2005, 15, 647; (c) Paz, K.; Zhu, Z. Front.
Biosci. 2005, 10, 1415; (d) Loriot, Y.; Massard, C.; Armand, J.-P. Oncologie 2006,
8, 815; (e) Morabito, A.; De Maio, E.; Di Maio, M.; Normanno, N.; Perrone, F. The
Oncologist 2007, 11, 753; (f) Kiselyov, A. S.; Balakin, K.; Tkachenko, S. E. Expert
Opin. Invest. Drugs 2007, 16, 83; (g) Schenone, S.; Bondavalli, F.; Botta, M. Curr.
Med. Chem. 2007, 14, 2495; Zhong, H.; Bowen, J. P. Curr. Top. Med. Chem. 2007, 7,
1379; Underiner, T. L.; Ruggeri, B.; Gingrich, D. E. Curr. Med. Chem. 2004, 11,
731. plus the 10 first references in this review.
7. (a) Zou, H. Y.; Li, Q.; Lee, J. H.; Arango, M. E.; McDonnell, S. R.; Yamazaki, S.;
Koudriakova, T. B.; Alton, G.; Cui, J. J.; Kung, P.-P.; Nambu, M. D.; Los, G.; Bender,
S. L.; Mroczkowski, B.; Christensen, J. G. Cancer Res. 2007, 67, 4408; (b) Kung, P.-
P.; Funk, L.; Meng, J.; Alton, G.; Padrique, E.; Mroczkowski, B. Eur. J. Med. Chem.
2008, 43, 1321; (c) Bellon, S. F.; Kaplan-Lefko, P.; Yang, Y.; Zhang, Y.; Moriguchi,
J.; Rex, K.; Johnson, C. W.; Rose, P. E.; Long, A. M.; O’Connor, A. B.; Gu, Y.; Coxon,
A.; Kim, T.-S.; Tasker, A.; Burgess, T. L.; Dussault, I. J. Biol. Chem. 2008, 283,
2675; (d) Schroeder, G. M.; Chen, X.-T.; Williams, D. K.; Nirschl, D. S.; Cai, Z.-W.;
Wei, D.; Tokarski, J. S.; An, Y.; Sack, J.; Chen, Z.; Huynh, T.; Vaccaro, W.; Poss, M.;
Wautlet, B.; Gullo-Brown, J.; Kellar, K.; Manne, V.; Hunt, J. T.; Wong, T. W.;
Lombardo, L. J.; Fargnoli, J.; Borzilleri, R. M. Bioorg. Med. Chem. Lett. 2008, 18,
1945; (e) Cai, Z.-W.; Wei, D.; Schroeder, G. M.; Cornelius, L. A. M.; Kim, K.; Chen,
X.-T.; Schmidt, R. J.; Williams, D. K.; Tokarski, J. S.; An, Y.; Sack, J.; Manne, V.;
Kamath, A.; Zhang, Y.; Marathe, P.; Hunt, J. T.; Lombardo, L. J.; Fargnoli, J.;
Borzilleri, R. M. Bioorg. Med. Chem. Lett. 2008, 18, 3224; (f) Albrecht, B. K.;
Harmange, J.-C.; Bauer, D.; Berry, L.; Bode, C.; Boezio, A. A.; Chen, A.; Choquette,
D.; Dussault, I.; Fridrich, C.; Hirai, S.; Hoffman, D.; Larrow, J. F.; Kaplan-Lefko, P.;
Lin, J.; Lohman, J.; Long, A. M.; Moriguchi, J.; O’Connor, A.; Potashman, M. H.;
Reese, M.; Rex, K.; Siegmund, A.; Shah, K.; Shimanovich, R.; Springer, S. K.;
Teffera, Y.; Yang, Y.; Zhang, Y.; Bellon, S. F. J. Med. Chem. 2008, 51, 2879; (g)
Comoglio, P. M.; Giordano, S.; Trusolino, L. Nat. Rev. Drug Disc. 2008, 7, 504; (h)
Knudsen, B. S.; Vande Woude, G. Curr. Opin. Gen. Dev. 2008, 18, 87; (i) Liu, L.;
(BSA) and 20
60 mM Hepes pH 7.5 containing 3 mM MgCl2, 3 mM MnCl2, 1.2 mM b-
mercaptoethanol, 0.1 mg/mL BSA and 3 M vanadate. ATP concentrations in
the assay were 10 M for VEGFR-2/KDR (2Â
M for c-Met (5Â the Km) and 0.6
lM vanadate, while the VEGFR-2/KDR reaction was conducted in
l
l
l
the Km). Enzyme concentration was 25 nM (c-Met) or 5 nM (VEGFR-2). The
recombinant enzymes were pre-incubated with inhibitor and Mg-ATP on ice in
polypropylene 96-well plates for 4 min, and then transferred to the substrate
coated plates. The subsequent kinase reaction took place at 30 °C for 30 min (c-
Met) or 10 min (VEGFR2). After incubation, the kinase reactions were
quenched with EDTA and the plates were washed. Phosphorylated product
was detected by incubation with Europium-labeled anti-phosphotyrosine
MoAb. After washing the plates, bound MoAb was detected by time-resolved
fluorescence in a Gemini SpectraMax reader (Molecular Devices). Inhibitors
were tested at seven different concentrations each in triplicate. IC50s were
calculated in a four parameters equation curve plotting inhibition (%).
14. Cellular assay conditions: A cellular clone of 293T cells stably expressing TPR-
Met (Park, M.; Dean, M.; Cooper, C. S.; Schmidt, M.; O’Brien, S. J.; Blair, D. G.;
Vande Woude, G. F. Cell 1986, 45, 895), the activated mutated form of the
receptor Met, under a CMV promoter was derived. Cells were treated with
compounds dilutions for 150 min and lysate samples from treatment wells
were transferred to high-binding white polysterene 96-well plates (Corning).
TPR-Met autophosphorylated levels were detected by ELISA using the primary
antibodies anti-phospho-Tyrosine (Millipore, 4G10) and a reporter antibody,
anti-mouse-horseradish peroxidase (Sigma). Plates were washed on a plate
washer (SkanWasher, Molecular Devises) and subsequently incubated with
chemiluminescent substrate solution (ECL, Roche). Luminescence signal was
captured on a Polar Star Optima apparatus (BMG LabTech). Average values of
triplicate treatment points were used to prepare IC50 curves using
a 4-
parameter fit model. These curves were calculated using GRAFIT 5.0 software.