Y. S. Oh et al. / Tetrahedron: Asymmetry 21 (2010) 1833–1835
1835
5. For recent examples of nitrone ligands for metal-catalysts, see: (a) Yao, Q.;
Zabawa, M.; Woo, J.; Zheng, C. J. Am. Chem. Soc. 2007, 129, 3088–3089; (b)
Zhang, Y.; Song, G.; Ma, G.; Zhao, J.; Pan, C.-L.; Li, X. Organometllics 2009, 28,
3233–3238.
products 5a and 5b were obtained from 4a and 4b with moderate
yields and enantioselectivities, respectively. The observed high ste-
reospecificity suggests a mechanism involving a chair-like cyclic
transition state with the aryl group of the aldehyde in the equato-
rial orientation. Further studies are needed to elucidate the de-
tailed mechanism involving the role of the DMPU additive.
6. C2-Symmetrical
bisimidazole
N,N0-dioxides
derived
from
1,2-
cyclohaxanediamine have recently been reported as Lewis base catalysts for
´
enantioselective allylation, see: Kwiatkowski, P.; Mucha, P.; Mloston, G.;
Jurczak, J. Synlett 2009, 1757–1760.
7. Zhang, W.; Basak, A.; Kosugi, Y.; Hoshino, Y.; Yamamoto, H. Angew. Chem., Int.
Ed. 2005, 44, 4389–4391.
8. General procedure for preparation of dinitrones: To (S,S)-N,N’-dihydroxyl1-1,2-
cyclohexanediamine dihydrochloride7 (0.5 mmol), dichloromethane (10 mL),
NaHCO3 (252 mg, 6 equiv), and an aldehyde (1.5 mmol) were added at room
3. Conclusion
In summary, we have proposed the use of chiral dinitrones as
new and modular Lewis base catalysts. With DMPU as an additive
in chloroform, chiral dinitrones effectively catalyzed the asymmet-
ric allylation of aldehydes with allyltrichlorosilanes to give good
yields and good enantioselectivities. Further improvement of the
catalytic activity and selectivity as well as application to other
reactions utilizing the concept of modularity of dinitrone catalysts
are currently in progress.
temperature. The reaction mixture was refluxed for
6 h, filtered, and
evaporated. The residue was purified by silica gel column chromatography
(hexane/acetone or dichloromethane/EtOH) to give a dinitrone.
9. Leading references on enantioselective allylation of aldehydes with
allyltrichlorosilanes catalyzed by various types of chiral Lewis bases. For
chiral phosphoramides, see: (a) Denmark, S. E.; Coe, D. M.; Pratt, N. E.; Griedel,
B. D. J. Org. Chem. 1994, 59, 6161–6163; (b) Denmark, S. E.; Fu, J.; Lawler, M. J. J.
Org. Chem. 2006, 71, 1523–1536; (c) For chiral pyridine N-oxides, see: Ref. 2a.;
(d) Malkov, A. V.; Orsini, M.; Pernazza, D.; Muir, K. W.; Langer, V.; Meghani, P.;
ˇ
´
Kocovsky, P. Org. Lett. 2002, 4, 1047–1049; (e) Shimada, T.; Kina, A.; Ikeda, S.;
Hayashi, T. Org. Lett. 2002, 4, 2799–2801; (f) Malkov, A. V.; Bell, M.; Castelluzzo,
F.; Kocˇovsky´, P. Org. Lett. 2005, 7, 3219–3222; (g) Chai, Q.; Song, C.; Sun, Z.; Ma,
Y.; Ma, C.; Dai, Y.; Andrus, M. B. Tetrahedron Lett. 2006, 47, 8611–8615; (h)
Acknowledgment
ˇ
Kadlcíková, A.; Hrdina, R.; Valterová, I.; Kotora, M. Adv. Synth. Catal. 2009, 351,
This work was partially supported by a Grant-in-Aid of Scien-
tific Research from the Ministry of Education, Culture, Sports, Sci-
ence and Technology of Japan.
1279–1283; For chiral formamides, see: (i) Iseki, K.; Mizuno, S.; Kuroki, Y.;
Kobayashi, Y. Tetrahedron Lett. 1998, 39, 2767–2770; For chiral sulfoxides, see:
ˇ
´
(j) Massa, A.; Malkov, A. V.; Kocovsky, P.; Scettri, A. Tetrahedron Lett. 2003, 44,
7179–7181; (k) Rowlands, G. J.; Barnes, W. K. Chem. Commun. 2003, 9, 2712–
2713; (l) For chiral phosphine oxides, see: Ref. 2c.; (m) Simonini, V.; Benaglia,
M.; Benincori, T. Adv. Synth. Catal. 2008, 350, 561–564; For chiral pyrrolidine N-
oxides, see: (n) Traverse, J. F.; Zhao, Y.; Hoveyda, A. H.; Snapper, M. L. Org. Lett.
2005, 7, 3151–3154; (o) Simonini, V.; Benaglia, M.; Pignataro, L.; Guizzetti, S.;
Celentano, G. Synlett 2008, 1061–1065.
References
1. For recent reviews on modular ligands or catalysts, see: (a) Reetz, M. T. Angew.
Chem., Int. Ed. 2008, 47, 2556–2588; (b) Blaser, H.-U.; Pugin, B.; Spindler, F.;
Thommen, M. Acc. Chem. Res. 2007, 40, 1240–1250; (c) Hoveyda, A. H.; Hird, A.
W.; Kacprzynski, M. A. Chem. Commun. 2004, 1779–1785.
10. DMPU and chiral urea derivatives have been used for allylation with
allyltrichlorosilane, see: Chataigner, I.; Piarulli, U.; Gennari, C. Tetrahedron
Lett. 1999, 40, 3633–3634.
11. HMPA has been used as an effective achiral additive for enantioselective
allylation catalyzed by chiral formamides, see: Ref. 9i.
12. Catalyst 1a (Table 3, entry 1) and 1f (entry 10) were recovered in 99% and 93%,
respectively.
13. General procedure for allylation of aldehydes with allyltrichlorosilanes: to
2. (a) Nakajima, M.; Saito, M.; Shiro, M.; Hashimoto, S. J. Am. Chem. Soc. 1998, 120,
6419–6420; (b) Nakajima, M.; Yokota, T.; Saito, M.; Hashimoto, S. Tetrahedron
Lett. 2004, 45, 61–64; (c) Nakajima, M.; Kotani, S.; Ishizuka, T.; Hashimoto, S.
Tetrahedron Lett. 2005, 46, 157–159; (d) Kotani, S.; Hashimoto, S.; Nakajima, M.
Synlett 2006, 1116–1118; (e) Kotani, S.; Hashimoto, S.; Nakajima, M.
Tetrahedron 2007, 63, 3122–3132; (f) Nakanishi, K.; Kotani, S.; Sugiura, M.;
Nakajima, M. Tetrahedron 2008, 64, 6415–6419; (g) Sugiura, M.; Sato, N.;
Kotani, S.; Nakajima, M. Chem. Commun. 2008, 4309–4311; (h) Sugiura, M.;
Kumahara, M.; Nakajima, M. Chem. Commun. 2009, 3585–3587; (i) Kotani, S.;
Shimoda, Y.; Sugiura, M.; Nakajima, M. Tetrahedron Lett. 2009, 50, 4602–4605;
(j) Shimoda, Y.; Tando, T.; Kotani, S.; Sugiura, M.; Nakajima, M. Tetrahedron:
Asymmetry 2009, 20, 1369–1370; (k) Sugiura, M.; Sato, N.; Sonoda, Y.; Kotani,
S.; Nakajima, M. Chem. Asian J. 2010, 5, 478–781.
a
solution of dinitrone 1f (20 mol %), an aldehyde 2 (0.4 mmol), and DMPU (1.5
equiv) in chloroform (1 mL) was added allyltrichlorosilane (1.5 equiv) under
argon at room temperature. After being stirred at that temperature for 24 h, the
reaction was quenched with satd aqueous NaHCO3 (10 mL), and the slurry was
stirred for 1 h. The mixture was filtered through cotton wool and extracted
with ethyl acetate (3 ꢁ 15 mL). The combined organic layers were washed with
brine (1 ꢁ 30 mL), dried over MgSO4, filtered, and concentrated under vacuum.
The crude product was purified by silica gel column chromatography (hexane/
ethyl acetate) to give the product 3. The enantiomeric excess was determined
by HPLC analysis.
3. For reviews on Lewis base catalysis, see: (a) Orito, Y.; Nakajima, M. Synthesis
ˇ
´
2006, 1391–1401; (b) Malkov, A. V.; Kocovsky, P. Eur. J. Org. Chem. 2007, 29–36;
(c) Denmark, S. E.; Beutner, G. L. Angew. Chem., Int. Ed. 2008, 47, 1560–1638; (d)
Liu, X.; Lin, L.; Feng, X. Chem. Commun. 2009, 6145–6158.
14. Low reactivity of non-conjugated aldehydes has been observed for Lewis base-
catalyzed reactions with trichlorosilylated reagents. This result has been
ascribed to the formation of the corresponding O-silylated chlorohydrins, see:
Denmark, S. E.; Wynn, T.; Beutner, G. L. J. Am. Chem. Soc. 2002, 124, 13405–
13407.
4. For reviews, see: (a) Pellissier, H. Tetrahedron 2007, 63, 3235–3285; (b) Gothelf,
K. V.; Jørgensen, K. A. Chem. Rev. 1998, 98, 863–909; (c) Merino, P. C. P. Chimie
2005, 8, 775–788; (d) Merino, P.; Franco, S.; Merchan, F. L.; Tejero, T. Synlett
2000, 442–454; (e) Lombaro, M.; Trombini, C. Synthesis 2000, 759–774.